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Abstract—This paper presents a solution to the Projective Structure from Motion (PSfM) problem able to deal efficiently with missing

data, outliers and, for the first time, large scale 3D reconstruction scenarios. By embedding the projective depths into the projective

parameters of the points and views, we decrease the number of unknowns to estimate and improve computational speed by optimizing

standard linear Least Squares systems instead of homogeneous ones. In order to do so, we show that an extension of the linear

constraints from the Generalized Projective Reconstruction Theorem can be transferred to the projective parameters, ensuring also a

valid projective reconstruction in the process. We use an incremental approach that, starting from a solvable sub-problem,

incrementally adds views and points until completion with a robust, outliers free, procedure. To prevent error accumulation, a

refinement based on alternation between new estimations of views and points is used. This can also be done with constrained

non-linear optimization. Experiments with simulated data shows that our approach is performing well, both in term of the quality of the

reconstruction and the capacity to handle missing data and outliers with a reduced computational time. Finally, results on real datasets

shows the ability of the method to be used in medium and large scale 3D reconstruction scenarios with high ratios of missing data (up

to 98%).

Index Terms—Structure-from-Motion, perspective cameras, projective reconstruction

✦

1 INTRODUCTION

1.1 The Projective Structure from Motion Problem

ROBUST factorization methods have been highly success-
ful in delivering a solution to affine Structure from

Motion (SfM) even in the presence of large amounts of
missing data and outliers [1], [2]. However, the Projective
Structure from Motion (PSfM) [3] problem still entails dif-
ficulties and despite considerable efforts, there are clear
limitations in current approaches [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14]. These problems span from the
non-linearity given by the perspective camera model to
the relevant presence of missing data, noise and outliers
in the measurement matrix containing the 2D observations.
These nuisances have restricted the applicability of PSfM
to relatively small 3D reconstruction scenarios with few
points and small percentages of missing data. Differently,
this paper shows how PSfM can be solved for challenging
real datasets by lessening the non-linearities of previous
approaches.

In detail, given f images of a scene and correspondences
between a set of n image points in multiple-views, SfM
estimates the 3D position of each point and the camera
poses. The simplest instance of SfM adopts affine cameras
for 3D projection that leads to a bilinear model in the form
of: M = PS. The measurement matrix M (of size 3f × n)
contains the homogeneous image projections m̃i,j while P

(of size 3f × 4) represents the vertical concatenations of the
3×4 camera matrices Pi and S (of size 4×n) is the horizontal
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concatenation of the homogeneous 3D points s̃j . As M is
resulting from a product of fixed size matrices, a rank-4
constraint exists and it has been used in [15] to factorize
such matrix into (P, S) up to an ambiguity using standard
computational tools (e.g. Singular Value Decomposition –
SVD). This factorization approach to the SfM problem has
been successfully applied to obtain a global solution, mean-
ing that all the data is used at once, and usually providing
closed-form solution without the need of an initialisation.

However the affine model restricts applicability to spe-
cific scenarios while current challenges in computer vision
go towards reconstructing large scenes where the assump-
tions of affine cameras are no longer satisfied. Upgrading
the camera model to perspective results in image projections
that also depend non-linearly on the 3D points depths with
respect to the camera, giving a slightly different problem:

M⊙ (D⊗ 13) = P S, (1)

where 13 is a 3-vector of ones and ⊙ or ⊗ denote respec-
tively the Hadamard or Kronecker products. The matrix D

of size f × n contains coefficients named projective depths
which are related to the real depth of every points in each
camera frame.

Moreover, when dealing with images having wide base-
lines, it is rather common to have 3D points occluded either
by the scene itself or because being out of the camera field.
As a consequence, the matrix M is often incomplete with
some of its entries missing. Completing these entries leads
to an NP-hard problem [16], [17] that can be defined as:

(Z⊗ 13)⊙M⊙ (D⊗ 13) = (Z⊗ 13)⊙ (P S), (2)

where Z is a f ×n binary matrix corresponding to the set Z
of known entries.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2018.2849973

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

These missing correspondences can also result from fail-
ures in matching the image projections of the 3D points.
Mismatches or extremely noisy correspondences can also
be present and are usually referred to as outliers. Once de-
tected, they can be removed by nullifying the corresponding
entries in Z. The presence of the projective depths D, missing
data and outliers is the reason why previous methods were
able to solve mainly toy-problems. Here we provide a prac-
tical and incremental method, named P2SfM, that allows
to solve for projective reconstructions with dataset that
represents a challenge even for modern large-scale solvers.

1.2 Notation

Homogeneous coordinates of a vector v are written as ṽ =

[v⊤1]
⊤

and Im×n is the m × n identity matrix. A m × n
matrix of 0 (or 1) is denoted 0m×n (or 1m×n) and 0n (or
1n) is a n-vector of 0 (or 1). Symbols ⊙ and ⊗ are used
for the element-wise and tensor product respectively. The
Moore-Penrose pseudo-inverse of a real vector v is written
v+ = v⊤/‖v‖2 and its associated skew symmetric matrix is
noted [v]

×
.

1.3 Related Work

Tomasi and Kanade [15] proposed the first factorization
based approach to SfM using orthographic cameras with-
out missing data. A first estimate of the low-rank bilinear
components was obtained through SVD and afterwards
a metric correction based on constraints raising from the
orthographic camera model was used to recover the 3D
structure solely from image trajectories. Considering multi-
view geometry relations, Sturm and Triggs [3], [18] pro-
posed the first extension to perspective cameras by finding
a projective depths matrix D which allows the SVD to
factorize M⊙ (D⊗ 13) as a product of two rank 4 matrices.
To compute D, pairwise fundamental matrix estimations
were linked together, which can result into accumulation of
errors. Moreover, [4] showed that this method can sometime
converge to useless results.

There have been several attempts to improve Sturm
and Triggs solution [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13] providing, in most of the cases, iterative methods
given the non-linearity of the problem. Instead of using
pairwise relations to compute D, such local iterative ap-
proaches usually start initializing D = 1f×n and then
adjusting D using the rank constraint while optimizing the
reprojection error. These approaches differ mainly by the
constraints used to prevent the convergence to trivial and ill-
conditioned solutions. An exception is [12] which proposes
a SDP formulation based on a trace norm minimization
making it suitable for global optimization. Only few of
the mentioned methods [10], [11], [12], [13] try to tackle
projective reconstruction with missing data. Recently, Hong
et al. [14] presented a projective bundle adjustment method
based on a Variable Projection approach from an arbitrary
initialization. Convergence to trivial solutions is prevented
by a penalty term discouraging update along the column
space of the initial P.

Given previous attempts to solve the problem, it was
becoming clearer that more attention needed to be posed

(a) Tiles, each one has
norm or sum of some
elements fixed.

(b) Step-like mask, the
dots are the fixed en-
tries.

(c) Cross-shaped ma-
trix, the dots are the
only non-null entries.

Fig. 1. The black rectangular boxes represent the matrix D containing
the projective depths for 6 cameras (rows) and 12 points (columns). Dots
represent single entries while small boxes are tiles that contain possibly
more than one entry. (b) and (a) show examples of valid constraints. (c)
is an invalid configuration of D.

on the constraints over D. Using multi-view geometry con-
siderations, Nasihatkon et al. [19] rightly pointed out in
the Generalized Projective Reconstruction Theorem (GPRT)
that only specific configurations of the projective depths
matrix D can provide a solution leading to a correct 3D
reconstruction. In particular, the GPRT states that D must be
diagonally equivalent to the true depth matrix and satisfy
the following conditions: no null column or row and not
cross-shaped, meaning a null matrix except for a cross as
in Fig. 1c. Except for [12], the previous methods mentioned
above do not comply fully with this theorem as they usually
do not prevent the cross-shaped configuration. In [19], two
set of constraints were proposed to ensure compatibility
with the GPRT. The first one is linear and fixes some entries
of the matrix D following a step-like mask as in Fig. 1b.
The second one is quadratic and considers all entries of the
matrix D by considering the norm of non-overlapping tiles
such as in Fig. 1a.

Another important aspect for a practical factorization
method is its ability to deal with missing and erroneous
data. In particular for SfM, if we exclude toy problems,
the measurement matrix M has a large number of missing
data given that few views have many overlapping points.
Solutions to solve this problem started with the method of
Wiberg [20], [21]. A set of methods propose strategies that
combine partial low-rank factorizations from sub-blocks of
the M matrix that contain full data only. Although applied
mainly to affine camera models, the optimization strategy
used is quite relevant. This technique was pioneered by
Jacobs [22] reconstructing the measurement matrix by first
building its row or column null-space or one of its range
spaces and have been applied both to the rigid [22] and
non-rigid [23] SfM problems. This part based factorization
has been then extended to be more robust to higher ratios
of missing data and outliers [1], [2], [24], [25], [26]. However
these solutions, more computationally viable, are still not
available for PSfM in the literature and in the next section
we will show our contributions to this end. Our approach is
related to [2] limited to Henneberg constructive extensions
and adapted to the perspective case.

In the case of affine SfM, the use of the L1-norm has
been proposed to handle missing data and outliers [27],
[28]. Large scale matrix factorization with noise is also a
topic of interest in recommendation systems where the non-
negative constraint makes the problem harder. To deal with
this and given large size matrices, online and incremental
approaches have been proposed [29], [30] and associated to
gradient descent [31], [32]. Finally, the Divide and Conquer
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approach where the matrix is divided into small blocks has
been used successfully to solve this kind of problem [33].

1.4 Proposed Approach and Contributions

First, we make explicit that (P, S) already contain the pro-
jective depths information thus being useless to re-estimate
such parameters as done in most previous approaches.
This results in a more compact parametrization of the
PSfM problem which is still bilinear. Moreover, we show
that a generalization of the step-like mask constraint on
the projective depths of [19] can be linearly transferred to
the projective estimation of (P, S). This leads to efficient
optimization based on alternating simple standard linear
Least Squares minimizations.

Then, similarly to the affine case [2], our method adopts
an incremental procedure to solve the PSfM problem. This
strategy is key to success in the presence of outliers and
high ratio of missing data since it allows to select parts
which are solvable through a robust, RANSAC-based, fitting
procedure to remove outliers which are then treated as
missing data. In this regard, we demonstrate, for the first
time, that PSfM can deal with large scale scenarios typical
of the most advanced bundle adjustment based pipelines
[34]. Whenever the reconstruction obtained is incomplete,
i.e. does not contain all views, we propose to restart it
from unestimated views and merge the reconstructions if
possible.

2 COMPACT FACTORIZATION FORMULATION

We now present in this section a formulation of the PSfM
problem where the projective depths are eliminated. This
leads to the core linear Least Squares systems that are the
building blocks for our incremental efficient and robust
pipeline to solve the PSfM problem.

2.1 Projective Parameters Fundamental Relations

Let X and Q be the respective estimation of P and S

up to a 4 × 4 invertible projective ambiguity Y meaning
X = PY and Q = Y−1S. An estimation of the projective
parameters of a point sj (or a camera Pi) is then the 4-
vector qj corresponding to the column j of Q (or the 3 × 4
matrix Xi corresponding to rows 3i − 2 to 3i of X). The
fundamental relation between the projective parameters Xi

and qj , the projective depth di,j of point j in view i and the
2D projection mi,j is given by

di,jm̃i,j = Xiqj . (3)

Having an estimation of the projective parameters Xi and
qj , it results that the projective depth can be estimated as

di,j = m̃+
i,jXiqj . (4)

Eliminating the projective depths di,j from Eq. (3) can
be done as in the DLT method [35] using the cross product
resulting in

E [m̃i,j ]× Xiqj = 0, (5)

where E is a 2 × 3 matrix containing the two first rows of
the identity and is used to remove the linear dependency
between the third line and the first two. Note that DLT

leads to minimizing the algebraic error and, following [35],
an appropriate normalization of the data is necessary and
introduced in Sec. 3.

Another elimination method can be obtained using
Eq. (4) to substitute the projective depths in Eq. (3) giving

E

(

m̃i,jm̃
+
i,j − I3

)

Xiqj = 0. (6)

Again the matrix E is used to remove redundancy as
m̃i,jm̃

+
i,j − I3 is rank deficient. While this provides a

maximum likelihood estimator, it seems less accurate than
the DLT elimination as will be shown experimentally in
Sec. 4.1.4.

Assuming we know the projective parameters of v views
where the image projections of the point j are visible, the
corresponding projective parameters qj must satisfy






EF1,j X1

...
EFv,j Xv




qj = 02v, (7)

where Fi,j is the matrix [m̃i,j ]× or m̃i,jm̃
+
i,j −I3 depending

on the elimination method chosen.
If the view i contains the image projections of p points

for which estimations of their projective parameters are
available, then its projective parameters Xi vectorized row
by row as xi are such that






EFi,1 G1

...
EFi,p Gp




xi = 02p , Gj

⊤ =





qj 04 04

04 qj 04

04 04 qj



 . (8)

2.2 Projective Parameters Constraints

In this section, we propose a new set of linear constraints on
the projective parameters which satisfy the conditions to be
reconstruction friendly with respect to the GPRT [19]. Using
the same tiling as in Fig. 1a, for each tile we constrain the
projective parameters of the corresponding point or view to
be estimated such that



1

kpj

∑

i∈F
p

j

m̃+
i,jXi





︸ ︷︷ ︸

=c
p

j
⊤

qj = 1 or




1

kvi

∑

j∈Fv
i

m̃+
i,jGj





︸ ︷︷ ︸

=c
v
i
⊤

xi = 1,

(9)
where Fp

j is the set of kpj views used to constrain the point
j and Fv

i the set of kvi points used to constrain the view
i. Note that the measurements must be available for all the
projections considered into these sets. However we do not
have to necessarily consider all the visible projections as
explained in App. A.

From Eq. (4), our constraints can be transferred to the
projective depths. When the sum contains only the last ele-
ment of each tile, they are actually equivalent to the step-like
constraints presented in [19] and illustrated in Fig. 1b, which
corresponds to the tiling of Fig. 1a. This generalization was
required as the projection of the last element of each tile
is not always visible and it has the advantage of using all
the data to build the constraints. To prevent cross-shaped
degeneracies, we impose in Sec. 3.3 the first tiles to contain
fixed entries forming a 2 × 3 tetris step-like block coloured
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green in Fig. 1. As this sub-block cannot be cross-shaped,
the final reconstruction cannot be either.

2.3 Solving for Projective Parameters

The systems from Eq. (7) and Eq. (8) are homogeneous and
linear in either qj or xi. They can be written generically as

Ay = 0, (10)

where A is of size 2v× 4 (point case) or 2p× 12 (view case).
The constraints from Sec. 2.2 can then be used to linearly

substitute one of the projective parameters in these systems.
Doing the substitution to remove y1, the first entry of y in
Eq. (10), we have to split A, y and c defined in Eq. (9) as

A =
[
a A′

]
, y =

[
y1
z

]

and c =

[
c1
c′

]

, (11)

where a and A′ are the first and remaining columns of
A. Then after the substitution, we obtain the following
standard linear system satisfied by z

Bz = b with

{

B = A′ − ac′
⊤
/c1

b = −a/c1
. (12)

With at least two visible projections for a point and
six for a view, this system is overdetermined and can be
efficiently minimized in the Least Squares sense to solve for
z using an economy size QR decomposition with column
pivoting of the matrix B and back substitution in the tri-
angular factor. Note that z is a minimal parametrization of
the projective parameters as it contains only three degrees
of freedom for a point and eleven for a view. Once z is
estimated, we can retrieve y1 as

y1 =
1

c1

(

1− c′
⊤
z
)

, (13)

which gives a minimizer y of Eq. (10) satisfying exactly the
constraint c⊤y = 1 from Eq. (9).

3 PRACTICAL PROJECTIVE SFM (P2SFM)

We describe here our method to estimate the projective
factors X and Q by solving incrementally and robustly

min
X,Q

∑

i,j∈Z

‖EFi,jXiqj‖22 s.t.

{

c
p
j

⊤
qj = 1, ∀j

cvi
⊤xi = 1, ∀i , (14)

which minimizes the algebraic error in the projective space
under constraints complying with the GPRT [19] to ensure
a valid reconstruction. A graphical illustration of our ap-
proach is provided in Fig. 2 and important details on each
step are given from Sec. 3.3 to 3.6. We named our method
Practical Projective Structure-from-Motion and abbreviated it
P2SfM to avoid spelling difficulties.

3.1 Overview of the Proposed Method

Before starting, the image projections are normalized to im-
prove the conditioning of the linear Least Squares systems
to be solved (Sec. 3.2). It is more computationally efficient
to compute all m̃+

i,j and EFi,j only once and store them
into sparse data matrices. The method then starts with
an initial sub-problem (Sec. 3.3) and iterates by robustly

adding missing tiles (Sec. 3.5) where each tile corresponds
to either a view (3-rows) or a point (a column). Multiple
views or points can be added at the same time and the
procedure continues until no further tile can be added.
Searching for tiles to be added depends on the number
of visible projections and eligibility thresholds which are
dynamically adjusted (Sec. 3.4). After each inclusion, the
reconstruction is refined by re-estimating all the points and
views already added (Sec. 3.6). The complete method is then
given in Fig. 3 and can be restarted from line 3 to provide
multiple reconstructions when the first reconstruction does
not contain all views. The result is multiple normalized
projective reconstructions satisfying the GPRT [19] and the
corresponding sets of inlier projections.

3.2 Normalization of Projections

At the very beginning of our method, line 1 of Fig. 3, we nor-
malize the measurement matrix before any other operations.
Although done following the standard procedure of [35],
this step is of crucial importance as the linear Least Squares
optimization done later can become unstable without it.
For each view of the problem, we compute and apply a
3 × 3 transformation given by a 2D translation moving the
centroid of the measurements to the center of the image
and an isotropic rescaling such that the average Euclidean
distance to the center is

√
2. This is done only for the visible

tracked points in this view and the computed transforma-
tion is stored to be reused later for the computation of the
reprojection error. Note that the result of our method is
therefore a normalized projective reconstruction which can
be rectified to match the original image frames by inverting
the transformations. It is however preferable to make this
last step after the metric upgrade as it can also benefit of the
normalization.

3.3 Initial Sub-Problem Selection and Estimation

The initial sub-problem can be of arbitrary size but in
general it is preferable to start from minimal configurations.
In such case, we need to find a set of frames and points, i.e.
a matrix sub-block as in Fig. 2a that can be robustly solved
to get a valid initial projective reconstruction. This is done
in the standard way with robust fundamental matrix esti-
mation [35] after selecting two views using the pyramidal
affinity score described in App. B. If by chance the robust
estimation of the fundamental matrix fails, we move to the
next higher score until a solvable sub-matrix is found. When
restarting to provide multiple reconstructions, we consider
only pairs of views containing at least one view that has not
been estimated in any of the previous reconstructions. We
also prefer pairs which contain only views not previously
estimated.

After extracting the epipolar geometry from the esti-
mated fundamental matrix as in [3], [18], an SVD of the sub-
matrix can be used to compute the projective parameters
of the initial two views and the inlier points. The resulting
projective parameters are then balanced to match the con-
straints as defined in Sec. 2.2. This balancing procedure is
detailed in App. A.
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(a) Initial sub-problem (green). (b) Adding one view (blue). (c) Adding three points (blue). (d) Final reconstruction and inliers.

Fig. 2. Example of the incremental procedure to reconstruct a scene with 6 views and 12 points. The dots indicates visible projections, red ones
are outliers. We start in (a) with a previously solved sub-problem of 4 views and 8 points in green, grey tiles indicates data not yet considered.
Then at each step, green tiles are the current reconstruction and tiles currently added to expand it are in blue. For instance, in (b) we robustly add
a view, automatically removing an outlier projection. In (c) we then robustly add three points. This is repeated until we reach a final outliers free
reconstruction in (d).

1 Normalize projections, see sec. 3.2, and compute all
data matrices ;

2 while some views are not estimated and maximum
number of model not reached do

3 Find an initial sub-problem and robustly solve it,
see sec. 3.3 ;

4 while reconstruction is not complete and
(reconstruction was extended or an eligibility
threshold can be decreased) do

5 Find currently eligibles views, see sec. 3.4 ;
6 Try to add eligibles views robustly, see

sec. 3.5 ;
7 if at least one eligible view has been added then
8 Increase the eligibility threshold for

points ;
9 Refine locally the reconstruction, see

sec. 3.6 ;
10 else if no view was eligible then
11 Decrease the eligibility thresholds for

views if not minimum ;

12 Find currently eligibles points, see sec. 3.4 ;
13 Try to add eligibles points robustly, see

sec. 3.5 ;
14 if at least one eligible point has been added then
15 Increase the eligibilty thresholds for

views ;
16 Refine locally the reconstruction, see

sec. 3.6 ;
17 else if no point was eligible then
18 Decrease the eligibility threshold for

points if not minimum ;

19 Refine globally the reconstruction, see sec. 3.6 ;

Fig. 3. Practical Projective SfM (P2SfM).

3.4 Finding Eligibles Views and Points

Finding the views or points to add next is a critical issue. In
order to do so, we first define a point or view as known
if an estimation of its projective parameters is available.
Initially known points and views are therefore given by the
solution of the initial sub-problem. We then call a point (or
view) eligible if there are more visible projections in known
views (or points) than a given eligibility threshold, which is
different for points and views. For views, we also compute
the pyramidal score [34] of the visible known points and

select only the views with highest scores.
If the eligibility thresholds are set too high, it might

happen that no point or camera is eligible. In order to
limit premature interruptions of the algorithm, the eligibility
thresholds are dynamically adjusted between an initial high
value and a minimum value both provided by the user. The
thresholds are decreased only when we are unsuccessful in
extending the reconstruction (lines 11 and 18 of Fig. 3) and
increased again when we successfully extends it (lines 8 and
15 of Fig. 3). The idea behind this dynamic approach is to
maximize the quantity of data used to estimate new points
and views, which improves the quality of the reconstruction.

We also included a rejection mechanism for points or
views that previously failed the robust estimation (see next
section). As a consequence, another condition to be eligible
is that the number of visible projections is greater than when
the last failure happened.

3.5 Robustly Adding a Point or View

Our method is based on minimizing the linear Least Squares
systems of Eq. (12) to estimate the projective parameters,
which are known to be sensible to outliers due to mis-
matches or strong noise. To deal with this, the estimation is
done robustly using a Locally Optimized RANSAC [36] with
the MSAC score [37] and an adaptive stopping criterion
given a minimum confidence of finding the optimal inlier
set. Projections detected as outliers are then removed from
the measurements matrix and treated as missing data.

During this procedure, we reject any random subset
leading to a rank deficient B, a bad condition number of
B or an excessive error in Eq. (12). The two first cases can
happen with degenerate configurations of points or views
but more frequently when estimating a view [38]. In order
to get better estimation from the random subset, we also
increased slightly its size. After selecting the inlier set of the
visible projections by using a threshold on the reprojection
errors, we prune projections for which the projective depth
is negative or null. Finally we also reject the estimation if
the resulting inlier set is smaller than the random subset.

If no correct estimation can be found before a given
maximum number of iterations, we temporary reject the
view or point. When new projections will be available for
this view or point, we try to add it again, ensuring the
random subsets contain at least one of the new projections.
This is necessary as a complete random subset would most
likely contains only previously rejected projections if there
are just a few new projections. The estimation would then
fail as they have already been through this procedure once.
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3.6 Reconstruction Refinement

Because an incremental procedure does not consider all
the information at once, it can be affected by errors ac-
cumulation while iterating. To prevent this, we refine the
reconstruction after trying to add eligible points (or views)
if any addition was successful. This is done by alternating
new estimations of all the projective parameters, starting
from views (or points), and continue until the overall change
in the projective parameters is small enough. This is done
without the robust procedure but using only projections
previously accepted as inliers. While re-estimating, we use
the same visible projections to build the constraints as when
the points or views were first added. A similar method was
proposed in [8] but without any constraints on the projective
depths.

To speed up the process while doing the completion,
the refinement in line 9 and 16 of Fig. 3 is done locally,
meaning only over the views and points recently added.
By recently, we intend only those added after the two last
changes of direction in the reconstruction extension which
corresponds to switching from adding only views to adding
only points (or the other way around). Note that it does not
necessarily coincide with the two last iterations of the main
loop as this loop can add only views (or only points) in
many consecutive iterations.

The refinement in line 19 of Fig. 3 is done either locally or
globally after more than a fixed number of local refinement
has been done. When it is done globally, all the estimated
points and views are reestimated. This is to ensure that
the improvement made locally is propagated to the entire
reconstruction. When the main loop ends, a final and global
refinement is also done.

Finally, the refinement can also be done by minimizing
directly the problem given in Eq. (14), which should be
preferable as all parameters would be optimized at once
(i.e. without alternation). This can be achieved using the
current estimation as an initialization for a local non-linear
optimization based on the augmented Lagrangian method
coupled with the L-BFGS algorithm [39]. To be efficient, this
requires analytical computation of all gradients, which are
easily done as both objective and constraints are polynomial
functions in the unknowns. Providing analytical Hessian of
the Lagrangian also allows for faster and more accurate
steps. All these computations have to be parallelized in
order to achieve maximum efficiency. Note that although
the problem of Eq. (14) is polynomial with a low degree,
the scale of it prevents the use of polynomial optimization
methods.

4 EXPERIMENTAL RESULTS

We validated the practicability of our approach with both
synthetic and real experiments evaluating performance in
realistic cases with high percentages of missing data and
outliers. Our implementation is freely available online1. We
compared our method (P2SfM) with [13] (YDHL) and [14]
(VarPro) that consistently outperform previous works thus
making adequate the comparison with these methods only.

1. Website is at https://bitbucket.org/lmagerand/ppsfm

4.1 Synthetic Dataset Results

To evaluate the proposed approach, 100 simulated se-
quences were generated with a missing data pattern that
models points falling out from the cameras field of view
as it is advisable to avoid randomly removed matches [40].
For each sequence, the 3D shape was obtained by randomly
generating 200 points inside a cube of unit dimension. A
set of 15 cameras was simulated from random intrinsic and
extrinsic parameters inside realistic ranges. Cameras were
placed randomly in a 1.25 units cube, looking at a random
position inside a 0.8 unit cube. Focal lengths are drawn from
[1500; 30500] pixels and sensor widths range from 800 to
6800 pixels with a 1.33 or 1.5 aspect ratio. We ensured that
each point was seen at least in four views and each view
contained at least 18 points projections.

To achieve exactly the tested ratios (from 50% to 75%),
we removed very few random entries when necessary. Fi-
nally, noise was simulated with a centred Gaussian on each
visible image projection. For evaluating results, the 3D error
on one sequence is calculated as

∥
∥S− SGT

∥
∥
F
/ ‖S‖F after

registering the estimated 3D points with Procrustes analysis.
The 2D error is computed as the root mean square (rms) of
all the reprojection errors. All errors are then averaged over
all the sequences of the dataset.

4.1.1 Robustness to Outliers

For this experiment, we generated up to eight outliers by
replacing randomly some projections with random coordi-
nates inside the corresponding views. While all methods
have a very small reprojection error without outliers, even
one is enough to decrease drastically the performance of
previous works as it can be observed in Fig. 4a. This impacts
also the 3D points reconstruction error which grow quickly
for them in Fig. 4b. Differently, our approach shows strong
resilience to increasing number of outliers.

Note that for a given sequence, previous works return a
result for all points and views or for none of them while our
method always gives a reconstruction where some points or
views might be unestimated due to the rejection mechanism
of Sec. 3.5. In Fig. 4c, the entire synthetic dataset is consid-
ered and the percentage of unestimated points corresponds
to the number of failed sequences for YDHL and VarPro and
the cumulative unestimated points for our method. We see
that VarPro fails less often than YDHL and is not afflicted
much by a few outliers. P2SfM is unaffected at all by outliers,
the small percentage of unestimated points is constant and
induced by noise.

4.1.2 Running Time Comparisons

Running times were obtained on a laptop having an intel
core i7-6700HQ processor and 16GB memory. No outliers
were added and the missing data ratio was kept to 60%.
Fig. 5a shows all algorithms performance on small scale
datasets of growing size. For each dataset size, ten sequences
were run and the average time is given. Both VarPro and
P2SfM are way faster than YDHL, clearly demonstrating
that including the projective depths as parameters of the
problem is computationally expensive.

When dealing with medium scale sequences, Fig. 5b(c)
show the behaviour when increasing the number of points
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Fig. 4. Behavior with outliers for the reprojection error (a), the 3D structure error (b) and the number of unestimated points (c) at two different
standard deviations of the noise (σ = 0.5 and σ = 1.5 pixels) and 60% of missing data. YDHL and VarPro are quickly and strongly afflicted by
outliers while P2SfM is almost unaffected thanks to the RANSAC based estimation.
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Fig. 6. Noise level effect on the 2D reprojection error (a) and behaviour
of the error on 3D structure (b) with increasing missing data ratio. Both
VarPro and P2SfM outperform YDHL.

and views respectively. For each size, the running time is
averaged over five sequences. The online procedure and
LLS minimization are keys to reduce computational costs
compared to VarPro. Due to high memory usage, YDHL
could not be run on the three biggest sequences and the
three smallest gave no result after 4 hours of computation.

Notice that all methods have been implemented in MAT-
LAB with no parallelization involved except for subroutines
natively supporting it. Using another language and the
shared memory paradigm, P2SfM can be massively accel-
erated by estimating points (or views) in parallel.

4.1.3 Missing Data and Noise Effect

Fig. 6a shows the evolution of the 2D reprojection error
when increasing the noise level from a 0 to 2 pixel standard
deviation at two ratios of missing data (55% and 70%). Both
VarPro and P2SfM outperform YDHL even in the noise-free
case where they achieve an almost perfect reconstruction.
They have similar behaviour for noise growing up to 1
pixel, and then the robust estimation of P2SfM starts filtering
projections with high noise resulting in a decreased error.

The behaviour of the 3D structure error is displayed on
Fig. 6b when the missing data ratio grows from 50% to 75%
in presence of noise (σ = 0.5 or 1.5 pixels). With a low noise,

VarPro and P2SfM have a similar evolution with low errors.
Due to the limited size of the sequences, when the noise is
higher and projections are filtered by the robust estimation,
few data remain available to the LLS estimation in P2SfM
and results in an higher error. In both cases, YDHL achieves
the lowest accuracy.

4.1.4 Comparison of Elimination Methods

Using the same dataset as in Sec. 4.1, we compared the
elimination of the projective depths done in Sec. 2.1 using
the cross product and the pseudo inversion. By varying
noise level from 0 to 2 pixel and missing data ratio from
50% to 75%, we can see in Fig. 7 that the behaviour is
globally similar. The cross product elimination achieves a
lower average 3D points and reprojection error as visible
in Fig. 7a and 7b. This is probably caused by the robust
elimination and rejection mechanism activated more often
resulting in less data available left to make the estimation
as confirmed in Fig. 7c and 7d which display the number of
unestimated points and views.

4.1.5 Non-Linear Refinement

To evaluate the non-linear refinement described in Sec. 3.6,
we tested it as a complement to the finale refinement done
in line 19 of Fig. 3 with the same small scale dataset as in
Sec. 4.1. A larger scale synthetic dataset made of twenty se-
quence with 100 views and 2000 points was also generated.
The implementation was done using the fmincon function
of MATLAB with user-supplied gradients for both the ob-
jective function and constraints without parallelization. The
Hessian of the Lagrangian was not provided.

As it can be observed in Fig. 8a and 8b, the improve-
ment on both the cost function and the 3D points error
is lower than 1% whatever the noise level added to the
measurements. This means that the alternation based refine-
ment scheme is already providing good reconstructions and
the non-linear refinement does not improve consistently.
Moreover, at 2 pixels noise level, it takes 25 iterations on
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Fig. 7. Comparison of the cross product (CP) and pseudo inversion (PINV) eliminations. (a) and (b) are respectively the 2D reprojection error and
3D structure error with increasing noise level at two ratio of missing data (55% and 70 %). (c) and (d) are respectively the percentage of unestimated
points or views when the missing data ratio is increasing at two level of noise (σ = 0.5 and σ = 1.5 pixels).

0 2 4
noise level (pix.)

0

0.05

0.1

o
b

j.
 i

m
p

ro
v

e
m

e
n

t 
(%

)

small
medium

(a) Cost function.

0 2 4
noise level (pix.)

0

0.5

1

3
D

 i
m

p
ro

v
e
m

e
n
t 

(%
)

small
medium

(b) 3D points error.

Fig. 8. Improvement made by the non-linear refinement on the objective
function (a) and 3D points error (b) compared to the output of the
alternation based refinement. The gain in accuracy is minimal for both
the small scale dataset and the larger one.

average to reach the minimum for both dataset leading to
excessive computation time. While computing the Hessian
analytically could eventually improve this, the small gain of
accuracy make the implementation effort questionable.

4.2 Real Data

In Tab. 1, we also evaluated P2SfM on various real datasets
of different size available in the literature. Note that, fol-
lowing COLMAP [34], points track with only two visible
projections have been removed from M in medium and large
scale sequences. These points are unreliable and useless for
expanding the reconstruction further and this also speed-
up the search for eligible views and points as the size of
the visibility matrix is reduced. The reported size for each
sequence is given after this removal.

When necessary, feature extraction and matching have
been done off-line once for all methods prior to reconstruc-
tions using the first stage of COLMAP [34] and we built
the measurement matrix from the output using [44] to find
points tracks. To obtain an Euclidean reconstruction from
the projective one, we used the metric upgrade method of
[45]. Given timings do not include the time required for all
these steps.

4.2.1 Small Scale Sequences

Five small scale sequences containing less than a million
entries in the measurements matrix M were evaluated and
results are given in Tab. 1. As points tracks are usually
shorter in small scale sequences, points with only two
visible projections are very common. Therefor, we have set
the minimum eligibility threshold to two visible projections
for these experiments only. P2SfM outperforms VarPro and
YDHL on both the 2D rms reprojection error and the run-
ning time for all sequences.

(a) Completed measurements. (b) 3D reconstruction.

Fig. 9. The dinosaur sequence. (a) shows the 2D image trajectories
after completion with a random colour for each one, making evident the
rotational motion of the dino. (b) presents the 3D reconstruction after
metric upgrade where the colours gradient corresponds to the depth
along the reconstruction principal axis.

An example of the 3D reconstruction obtained is given
on Fig. 9b for the famous Dino sequence. It shows a dinosaur
toy being rotated in front of a camera, which results in el-
liptical trajectories for the completed measurements as seen
on Fig. 9a. We used the 4983 points experiment since the
smaller Dino sequence is mostly suited for affine structure
from motion approaches [46] and it has a low missing data
ratio. The non-linear refinement was tested on this sequence,
and a 3% improvement is obtained on the objective function.
As it takes more than 4 minutes of computation even on this
small sequence, the non-linear refinement was not tested on
any other real data.

4.2.2 Medium and Large Scale Sequences

As seen in Tab. 1, existing PSfM approaches are unable to
reconstruct any of the medium or large scale sequences eval-
uated which contain millions of entries in the measurements
matrix M. VarPro could not complete any of these sequence
before exhausting available memory or reaching a twelve
hours time limit. YDHL is already having troubles process-
ing some of the small scale sequences and was not evaluated
here. Differently, our method successfully delivers correct
reconstructions, making it the first PSfM method able to deal
with such datasets.

We compared our results to COLMAP [34], a standard
bundle adjustment based method implemented in C++ us-
ing highly optimized libraries and a camera model with
radial distortion. While COLMAP usually achieves a lower
reprojection error, we need much less computational time
for the same reconstruction size. Example of views and
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TABLE 1
Real Sequences Results. P2SfM, VarPro and YDHL were evaluated on five small scale sequences. The results confirm what is observed on the

synthetic dataset, VarPro and P2SfM outperform YDHL. On medium scale, P2SfM was evaluated on seven sequences against VarPro and
COLMAP. VarPro could not provide a result for these sequences while COLMAP is usually slower than P2SfM for approximately the same

reconstruction size. The last sequence is an example of multi-model reconstruction which are merged after the metric upgrade.

Sequence P2SfM VarPro [14] YDHL [13] or COLMAP [34]
Name Size Missing Reconstructed 2D error Time (sec.) 2D error Time (sec.) 2D error Time (sec.)

House (VGG) 10 × 672 57.7% 10 × 672 0.4284 2.38 0.6246 68.9 0.6639 1054

Y
D

H
L

Dinosaur 319 36 × 319 76.9% 36 × 319 0.4668 2.59 1.5761 90.8 3.3543 609
Dinosaur 4983 36 × 4983 90.8% 36 × 4953 0.3780 11.6 1.6492 1428 Time Limit (4H)

Wilshire (Ponce) 190 × 411 60.7% 190 × 411 0.4789 38.1 0.5995 3623 0.6688 3851
Blue Teddy Bear (Ponce) 196 × 827 80.7% 196 × 827 0.6577 45.3 1.4169 13341 Time Limit (4H)

Vercingetorix [41] 69 × 11743 95.39% 69 × 10835 0.3887 106 Time Limit (12H) 0.4220 92

C
O

L
M

A
P

Cherubim [42] 65 × 45153 93.3% 65 × 45002 0.9146 105 Time Limit (12H) 0.4827 182

Dome des Invalides [41] 85 × 56031 91.9% 85 × 56031 0.3813 283 Out of Memory (8GB) 0.4115 278 2

Arc de Triomphe [41] 173 × 35971 95.5% 173 × 35013 0.5292 276 Out of Memory (8GB) Not Available (no images)
Alcatraz Water Tower [41] 173 × 40515 94.5% 173 × 40228 0.7159 343 Out of Memory (8GB) 0.4226 1696

Alcatraz West Side [41] 414 × 109214 96.6% 400 × 105064 0.8554 2442 Not Tested 0.5728 5141

Orebro Castle [41] 763 × 146065 98.3% 763 × 142776 0.5989 4972 Not Tested 0.4953 28372 3

Trafalgar Square [43] 257 × 25454 98.7% 222 × 13320 0.9760 689

(a) Cherubim. (b) Alcatraz Water Tower. (c) Dome des Invalides.

Fig. 10. Reconstructions obtained with P2SfM for the medium scale sequences. All P2SfM reconstructions are convincing with respect to the scene
observed. The colours gradient corresponds to the depth along the reconstruction principal axis.

(a) Photo. (b) Overview. (c) Front. (d) Side. (e) Top.

Fig. 11. One photo of the Vercingetorix statue (not from the sequence) and various views of the reconstruction. Despite strong perspective effects
due to the height of the statue, the reconstruction recovers correctly the shape with many details.

overview of the reconstruction are given in Fig. 10. Given
the size of the Alcatraz West Side and Orebro Castle se-
quences (about 120 millions entries in M), to the best of our
knowledge this are the largest successful reconstructions for
a PSfM method. Detailed comments on each sequence are
given next.

Vercingetorix. This sequence from [41] is made of close
views taken around the statue of Vercingetorix in Clermont-
Ferrand, implying strong perspective effects as the statue is

2. COLMAP reconstructed only 21108 points in this sequence.
3. COLMAP full reconstruction has 249301 points. After 2 hours of

computation, 365 views and 157821 points were reconstructed.

several meters above the ground as seen in Fig. 11a. The
statue itself is made of an horse carrying Vercingetorix and
jumping over a soldier on the ground. Various body parts of
the horse can be recognized in the reconstruction Fig. 11b:
tail, legs and head. The shape of Vercingetorix itself atop the
horse can be observed too, particularly in Fig. 11d. On the
basis seen from the front in Fig. 11c and side in Fig. 11d, the
ornaments and pillar heads are also reconstructed. The top
view in Fig. 11e shows that the angles are corrects.

Cherubim. This sequence consists of high resolution images
of a cherubim statue from [42]. It has a mostly uniform
surface and colour in many parts, resulting into difficulties
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(a) Wings. (b) Head. (c) Base.

Fig. 12. Details of the cherubim statue reconstruction. The round shape
of the base (c) is perfectly recovered. On the head (b), we can recognize
some features of the face like eyes or nose. The reconstruction of the
wings (a) is also highly detailed.

(a) Front Entrance. (b) Dome Details. (c) Top View.

Fig. 13. Details of the reconstruction of the Dome des Invalides. The
front entrance (a) and the dome (b) of the main building. A global top
view of the scene (c) including the garden, one of the wings and the rear
buildings.

to detect and match feature points. However, where enough
texture is present, the quality of the reconstruction and the
details are remarkable as can be observed in Fig. 10a. The
head is reconstructed with high details as it can be seen in
Fig. 12b, the main features of the face are visible. Finally
Fig. 12a shows that the shape of the wings is perfectly
recovered as is the round shape of the base in Fig. 12c.

Domes des Invalides. This is another sequence of [41]
which features the Domes des Invalides in Paris visible in
Fig. 10c. A reconstruction of the dome itself is shown in
Fig. 13b and it is well recovered, especially when consid-
ering that the building is tall and all the views are taken
from the ground level. The top view of the reconstruction
in Fig. 13c makes evident the correct angles of the recon-
struction between the left wing and the rear building, even
in the gardens where few points are tracked. In Fig. 13a,
the details of the reconstruction go as far as providing the
doors shape and statues in the alcoves. Note that COLMAP
takes approximately the same time than P2SfM to build a
reconstruction that contains much less points (only 38%).
This results from the method we use to find the points tracks
[44] from the output of COLMAP matching which delivered
more of them than COLMAP internal pipeline.

Arc de Triomphe. This sequence is made of images taken
around the Arc de Triomphe in Paris, a monument 50 meters
high with lot of detailed decorations. The proposed method
recovered most of the fine details as well as the overall shape
of the monument as it can be seen in Fig. 16. In Fig. 16d and
Fig. 16a, the points circling around the monument delimit
the roundabout where it is. The various decorations of the
monument are clearly visible in Fig. 16b and Fig. 16c.

Alcatraz Water Tower. The scene displayed in this sequence

(a) Top View Corner. (b) Water Tower. (c) Stairs and Fence.

Fig. 14. Details of the reconstruction of the Alcatraz courtyard and water
tower. An upper view of the corner of the courtyard (a) shows correct
angle of the walls and circular shape of the water tower for which the
structure is also nicely recovered (b). The stairs (c) are parallel and the
first step is higher than the others as in the reality.

(a) Panoramic Image.

(b) Reconstruction Overview.

Fig. 15. Panoramic view built from images of the Alcatraz West Side se-
quence and the corresponding reconstruction of 105064 points obtained
with P2SfM in only 41 minutes. This is a reasonable reconstruction
where all the main features of the scene are correctly recovered.

is a corner of the courtyard in the Alcatraz prison with its
water tower. This sequence is taken from [41] and contains
lot of views where the perspective effect is clearly visible,
especially on the stairs. A top view of the reconstruction
is given in Fig. 14a to show how well the walls of the
courtyard have been recovered. The cluster of points at the
corner, outside the walls, comes from a small cage present
in the scene although barely visible. The shape of the water
tower is also correct, which is confirmed also in a view from
its side as in Fig. 14b. Looking at the reconstruction from
another angle, Fig. 14c shows the stairs where the first step
is correctly reconstructed as being higher than the other.

Alcatraz West Side. As it can be seen in Fig. 15, this
sequence shows the garden outside the main building of Al-
catraz and it comes from [41]. The presence of an abundant
vegetation, illumination variation and many similar features
on the building made it relatively challenging. Nonetheless,
the reconstruction obtained in Fig. 15b, is rendering all the
main parts of the scene: the main building and its bushes,
the wall between the garden and the courtyard including
its fence, the top of the water tower and the lighthouse.
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(a) Overview. (b) Overview. (c) Front. (d) Top.

Fig. 16. Details of the reconstruction of the Arc de Triomphe. The rectangular shape of the monument is well recovered as can be seen in (c) and
(c). The sculptures and reliefs are also clearly distinguishable in (a) as well as the circular barrier around the monument.

(a) Aerial Photo. (b) Overview. (c) Entrance. (d) Top View.

Fig. 17. Details of the reconstruction of the Orebro castle. The overview (b) presents it from an upper view above the corner corresponding to
the smallest tower. The main entrance (c) of the castle can be seen on the front wall. Notice that in the top view (c) some walls appear to not be
orthogonal. This effect is not a perspective distortion given by our method since walls are not orthogonal in the real world.

Notice that the angle of the wall between the garden and
the courtyard might seem incorrect but is actually like this
in reality. Compared to COLMAP, we are twice faster to
achieve a reconstruction similar in size.

Orebro Castle. The last sequence from [41] shows the castle
of Orebro for which an aerial photo can be seen in Fig. 17a.
The shape of the castle is perfectly recovered as can be
observed in Fig. 17b, including many details from the front
wall in Fig. 17c such as the entrance and windows. Every
tower has a different size and this is also visible in the re-
construction from the top view in Fig. 17d. This is the largest
sequence we reconstructed with our method and it takes less
than an hour and half. Although COLMAP reconstructs 1.7
times more points, it also takes 5.7 times much more time.
As previously, the difference comes from the method used
to build the point tracks. This is independent of our method
which still reconstructs more than 97% of the points tracks
available.

4.3 Multiple Model Reconstruction

The famous Trafalgar sequence from [47] was one of the first
successful large scale reconstruction done from 257 internet
photos taken around the Trafalgar square in London. This
sequence is very challenging as it contains a lot of very noisy
measurements due to the various light variations and scene
change between all photos. It is also an extremely sparse
dataset as the missing data ratio is of 98.65% and only 39% of
the points are visible in more than two views. The visibility

Fig. 18. Visibility matrix of the Trafalgar square sequence where two
blocks of data with few common parts can be isolated.

matrix given in Fig. 18 clearly shows two blocks and few
common data. Therefore, the core of our method (i.e. line 3 to
19 of Fig. 3) is unable to go from one block to the other most
of the time as not enough of the common data pass both
outliers rejection and eligibility thresholds. By decreasing
the later and increasing the former, it is possible to obtain a
single model reconstruction but with a relatively low quality
as can be observed in Fig. 19c especially on the buildings in
front of the National Gallery.

However as seen in Fig. 19a, keeping safer values and
allowing for multiple models by restarting the main method
in line 2 of Fig. 3 enable us to obtain a better reconstruction
of both blocks which can be merged after the metric upgrade
using a robust procrustes analysis based on RANSAC. The
reconstruction and merging of the two blocks has been done
in 12 minutes, the first block contains 107 views and 6445
points while the second one is made of 134 views and 7314
points. There are 19 views and 439 points common to both
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(a) Overview. (b) Top View. (c) Single Model.

Fig. 19. Reconstruction of the Trafalgar sequence obtained by merging the two models resulting of our method. The first block (in blue) contains the
National Gallery and Saint Martin church while the second one (in black) is made of the Saint Martin church and some of the buildings around the
square. A single model reconstruction such as (c) can be obtained by lowering the settings which result in a poorer quality compared to (a).

(a) Incorrect. (b) Correct.

Fig. 20. Example of the loop-closure problem in the reconstruction of the
Linnaeus statue.

blocks used for the merging giving the final reconstruction
of 222 views and 13320 points. We tried allowing more than
two models but the next ones are too small and cannot be
merged with the two main models as they do not have
enough common points.

5 DISCUSSION

Despite the precautions adopted in Sec. 3.5, it can hap-
pen that degenerate configuration occur. Sometime many
attempts are required before obtaining a successful recon-
struction depending on the path taken while adding views
and points. Preventing this from happening would require a
set of reliable geometric verifications after the estimation of
a new view (or point) which are not currently implemented.

In the Linnaeus sequence from [2], our method fails to
achieve a correct reconstruction most of the time. As it can
be observed in Fig. 20a compared to a correct reconstruction
in Fig. 20b, an effect similar to the loop closure problem
is present where the reconstruction ends. We believe that in
this sequence, the current refinement scheme based on alter-
nation might not be enough to prevent error accumulation.

5.1 Implementation Details

In order to obtain best results, we recommend setting the
minimum eligibility thresholds to at least 24 for views and
4 for points whenever possible, and strongly advise to not
set them below 18 and 3 respectively. We used initials
values of 48 for views and 6 for points. For most sequences,
the parameters for the robust estimation were: an outlier

threshold of 4 pixels, a maximum number of iterations
fixed at 2000, and a confidence of 99.99% of having found
the optimum set on early exit. During the factorization,
the refinement is halted when the change in the projective
parameters is less than 10−4 or 50 iterations have been done.
The final refinement is made with a threshold of 10−5 over
the parameters change or a maximum of 100 iterations.

6 CONCLUSION

This paper presented P2SfM, an efficient method to solve
the PSfM problem in the case of strong ratios of missing
data and relevant outliers corrupting the measurements.
Constraints has been included to comply with the GPRT,
ensuring a correct projective reconstruction. The method
was tested against challenging real scenarios with up to 98%
missing data ratio and it has shown comparable or better
performance with respect to previous PSfM approaches,
making it a practical PSfM method. Future work will be ded-
icated in adapting the method to hierarchical approaches
such as [2], [48] so allowing to reconstruct even larger se-
quences and scaling up our method. Detecting and merging
similar points tracks as COLMAP could also increase the
quality of the reconstruction. Finally, to further improves
efficiency, a parallelized implementation is also considered.

APPENDIX A

BALANCING PROJECTIVE PARAMETERS

The GPRT [19] states that D from Eq. (1) should be diago-
nally equivalent to the matrix Λ of the real depths of each
point with respect to each camera. This means that there
exists two diagonal matrices (L,R) of size f × f and n × n
such that

L D R = Λ. (15)

Moreover, to prevent wrong reconstructions, the theorem
implies that these matrices must satisfy two conditions: The
diagonal coefficients must not be null or lead to a cross-
shaped D as in Fig. 1c. They are otherwise free and the goal
of the constraints is to fix them so that the optimization does
not converge to the trivial solutions where they would be
null. As we have stated in Sec. 2.2, constraints on the projec-
tive depths can be transferred to the projective parameters.
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The diagonal coefficients matrices can also be transferred to
the projective parameters giving

P̄ S̄ = (L−1 ⊗ I3) X Q R−1, (16)

where (P̄, S̄) are the real cameras and points matrices.
When solving the initial sub-problem in Sec. 3.3, we

use a fundamental matrix estimation to compute the initial
projective parameters. As the proof of the GPRT is based
on considerations over the fundamental matrix, these initial
projective parameters are naturally a valid projective recon-
struction. However, they do not satisfies the constraints we
defined in Sec. 2.2 but, thanks to the freedom of the diagonal
coefficients, they can be rectified. In order to do so, we
rescale them by αj or βi defined as

1

αj

= kpj




∑

i∈F
p

j

m̃+
i,jXi



qj or
1

βi

= kvi




∑

j∈Fv
i

m̃+
i,jGj



xi

(17)
respectively for point qj or camera Xi. This has no effect on
the validity of the reconstruction as this transformation is
absorbed into the diagonal coefficients.

For the same reason, we can consider only some entries
of each tile in Eq. (9) by removing some projections in the
sets Fp

j and Fv
i . This just results in applying a rescaling α′

j

or β′
i computed as in Eq. (17) except that the sum would be

done over the kpj
′

or kvi
′ projections still considered.

APPENDIX B

PYRAMIDAL AFFINITY SCORE

The selection of the initial sub-problem is important to the
quality of the final reconstruction. To address this prob-
lem, we merge two ideas: the pyramidal visibility score
defined in COLMAP [34] and the affinity score of Samantha
[48]. Both are bundle adjustment pipelines focused on high
quality reconstructions and error containment, the former
working in a online manner and the later with a hierarchical
procedure.

In Samantha, in order to build the hierarchy of actions to
follow in the reconstruction, an affinity score between two
images (i, j) is defined as

ai,j =
1

2

|Si,j ∩ Sj,i|
|Si,j ∪ Sj,i|

+
1

2

ch(Si,j) + ch(Sj,i)

Ai +Aj

, (18)

where Sk,l is the set of visible projections in image k also
visible in image l, ch(Sk,l) is the area of the convex hull
of this set in image k and Ak is the total area of image k.
The first term of this affinity score can be seen as a quality
measurement of the match between the two views: the more
common points they have, the better. The second term is a
measurement of the scene overlap of the two views which
is important to obtain a good stereo reconstruction.

In COLMAP, when looking for the next view to add to
the reconstruction, a score based on the distribution of the
projections of the already reconstructed points in the image
is defined. This score uses an efficient multi-resolution anal-
ysis of the projections positions in order to maximize the
quality of the camera resection to be done. At each layer l
of the multi-resolution analysis, the image is divided into
2l × 2l cells to which is associated a binary value: true if the

cell contains a visible projection, false otherwise. Then the
final score is

p =
n∑

l=1

(2l)2cl, (19)

where cl is the number of non-empty cells in the layer l.
To select the initial sub-problem, we propose to use the

following score
si,j = pi,j + pj,i, (20)

where pi,j is the pyramidal visibility score of Eq. (19)
computed for image i only with the projections matched
in image j. This score is more robust than the one in Eq. (18)
as it takes into account both the overlap of the scene and the
distribution of the projections in the views.
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