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Abstract

This paper presents a solution to the Projective Struc-
ture from Motion (PSfM) problem able to deal efficiently
with missing data, outliers and, for the first time, large
scale 3D reconstruction scenarios. By embedding the pro-
jective depths into the projective parameters of the points
and views, we decrease the number of unknowns to estimate
and improve computational speed by optimizing standard
linear Least Squares systems instead of homogeneous ones.
In order to do so, we show that an extension of the linear
constraints from the Generalized Projective Reconstruction
Theorem can be transferred to the projective parameters,
ensuring also a valid projective reconstruction in the pro-
cess. We use an incremental approach that, starting from a
solvable sub-problem, incrementally adds views and points
until completion with a robust, outliers free, procedure. Ex-
periments with simulated data shows that our approach is
performing well, both in term of the quality of the recon-
struction and the capacity to handle missing data and out-
liers with a reduced computational time. Finally, results on
real datasets shows the ability of the method to be used in
medium and large scale 3D reconstruction scenarios with
high ratios of missing data (up to 98%).

Notation. Homogeneous coordinates of a vector v are
written as ṽ = [v>1]

> and Im×n is the m × n identity
matrix. A m × n matrix of 0 (or 1) is denoted 0m×n (or
1m×n) and 0n (or 1n) is a n-vector of 0 (or 1). Symbols
� and ⊗ are used for the element-wise and tensor product
respectively. The Moore-Penrose pseudo-inverse of a real
vector v is written v+ = v>/‖v‖2 and its associated skew
symmetric matrix is noted [v]×.

1. Introduction

Robust factorization methods have been highly success-
ful in delivering a solution to affine Structure from Motion
(SfM) even in the presence of large amounts of missing data

and outliers [17, 24]. However, the Projective Structure
from Motion (PSfM) [26] problem still entails difficulties
and despite considerable efforts, there are clear limitations
in current approaches [22, 6, 31, 13, 5, 18, 19, 15, 8, 9, 14].
These problems span from the non-linearity given by the
perspective camera model to the relevant presence of miss-
ing data, noise and outliers in the measurement matrix
containing the 2D observations. These nuisances have re-
stricted the applicability of PSfM to relatively small 3D re-
construction scenarios with few points and small percent-
ages of missing data. Differently, this paper shows how
PSfM can be solved for challenging real datasets by less-
ening the non-linearities of previous approaches.

In detail, given f images of a scene and correspondences
between a set of n image points in multiple-views, SfM es-
timates the 3D position of each point and the camera poses.
The simplest instance of SfM adopts affine cameras for 3D
projection that leads to a bilinear model in the form of:
M = PS. The measurement matrix M (of size 3f × n)
contains the homogeneous image projections m̃i,j while P
(of size 3f×4) represents the vertical concatenations of the
3 × 4 camera matrices Pi and S (of size 4 × n) is the hori-
zontal concatenation of the homogeneous 3D points s̃j . As
M is resulting from a product of fixed size matrices, a rank-
4 constraint exists and it has been used in [28] to factorize
such matrix into (P,S) up to an ambiguity using standard
computational tools (e.g. Singular Value Decomposition –
SVD). This factorization approach to the SfM problem has
been successfully applied to obtain a global solution, mean-
ing that all the data is used at once, and usually providing
closed-form solution without the need of an initialisation.

However the affine model restricts applicability to spe-
cific scenarios while current challenges in computer vision
go towards reconstructing large scenes where the assump-
tions of affine cameras are no longer satisfied. Upgrading
the camera model to perspective leads image projections
that also depend on the 3D points depths with respect to
the camera, resulting in a different problem defined as:

M� (D⊗ 13) = P S, (1)
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where D is a f × n matrix containing the projective depths
for all projections.

Moreover, when dealing with images having wide base-
lines, it is rather common to have 3D points occluded either
by the scene itself or because being out of the camera field.
As a consequence, the matrix M is often incomplete with
some of its entries missing. Completing these entries leads
to an NP-hard problem [21, 10] that can be defined as:

(Z⊗ 13)�M� (D⊗ 13) = (Z⊗ 13)� (P S), (2)

where the f×n binary matrix Z indicates the known entries.
These missing correspondences can also result from fail-

ures in matching the image projections of the 3D points.
Mismatches or extremely noisy correspondences can also
be present and are usually referred to as outliers. Once de-
tected, they can be removed by nullifying the corresponding
entries in Z. The presence of the projective depths D, miss-
ing data and outliers are all aspects that have to be dealt with
in order to provide a successful method for PSfM.

1.1. Related Work

Tomasi and Kanade [28] proposed the first factorization
based approach to SfM using orthographic cameras with-
out missing data. A first estimate of the low-rank bilinear
components was obtained through SVD and afterwards a
metric correction based on constraints raising from the or-
thographic camera model was used to recover the 3D struc-
ture solely from image trajectories. Considering multi-view
geometry relations, Sturm and Triggs [26, 30] proposed the
first extension to perspective cameras by finding a projec-
tive depths matrix D which allows the SVD to factorize
M � (D ⊗ 13) as a product of two rank 4 matrices. To
compute D, pairwise fundamental matrix estimations were
linked together, which can result into accumulation of er-
rors. Moreover, [22] showed that this method can sometime
converge to useless results.

There have been several attempts to improve Sturm and
Triggs solution [22, 6, 31, 13, 5, 18, 19, 15, 8, 9] provid-
ing, in most of the cases, iterative methods given the non-
linearity of the problem. Instead of using pairwise relations
to compute D, such local iterative approaches usually start
initializing D = 1f×n and then adjusting D using the rank
constraint while optimizing the reprojection error. These
approaches differ mainly by the constraints used to prevent
the convergence to trivial and ill-conditioned solutions, ex-
cept for [8] which proposes a SDP formulation based on a
trace norm minimization making it suitable for global opti-
mization. Only few of the mentioned methods [19, 15, 8, 9]
try to tackle projective reconstruction with missing data.
Recently, Hong et al. [14] presented a projective bundle ad-
justment method based on a Variable Projection approach
from an arbitrary initialization. Convergence to trivial so-
lutions is prevented by a penalty term discouraging update

along the column space of the initial P.
Given previous attempts to solve the problem, it was be-

coming clearer that more attention needed to be posed on
the constraints over D. Using multi-view geometry consid-
erations, Nasihatkon et al. [20] rightly pointed out in the
Generalized Projective Reconstruction Theorem (GPRT)
that only specific configurations of the projective depths
matrix D can provide a solution leading to a correct 3D
reconstruction. Except for [8], the previous methods men-
tioned above do not comply fully with this theorem.

Online or incremental methods for matrix factorization
are a preferable choice when the data matrix is of consid-
erable size as shown by [17, 16] in the case of affine SfM,
especially to handle outliers [24]. However, such a solu-
tion, computationally viable and reconstruction friendly, is
still not available for PSfM in the literature and in the next
section we will show our contributions to this end. Our ap-
proach is related to [24] limited to Henneberg constructive
extensions and adapted to the perspective case.

1.2. Proposed Approach and Contributions

First, we make explicit that (P,S) already contain the
projective depths information thus being useless to re-
estimate such parameters as done in most previous ap-
proaches. This results in a more compact parametrisation
of the PSfM problem which is still bilinear. Moreover, we
show that a generalisation of the step-like mask constraint
on the projective depths of [20] can be linearly transferred
to the projective estimation of (P,S). This leads to efficient
optimization based on alternating simple standard linear
Least Squares minimizations.

Then, similarly to the affine case [24], our method adopts
an incremental procedure to solve the PSfM problem. This
strategy is key to success in the presence of outliers and high
ratio of missing data since it allows to select parts which
are solvable through a robust, RANSAC-based, fitting pro-
cedure to remove outliers which are then treated as missing
data. In this regard, we demonstrate, for the first time, that
PSfM can deal with large scale scenarios typical of the most
advanced bundle adjustment based pipelines [25].

2. Compact Factorization Based Formulation
We now present in this section a formulation of the

PSfM problem where the projective depths are eliminated.
This leads to the core linear Least Squares systems that are
the building blocks for our incremental efficient and robust
pipeline to solve the PSfM problem.

2.1. Projective Parameters Fundamental Relations

Let X and Q be the respective estimation of P and S up to
a 4× 4 invertible projective ambiguity Y meaning X = PY
and Q = Y−1S. An estimation of the projective parame-
ters of a point sj (or a camera Pi) is then the 4-vector qj



corresponding to the column j of Q (or the 3× 4 matrix Xi

corresponding to rows 3i− 2 to 3i of X). The fundamental
relation between the projective parameters Xi and qj , the
projective depth di,j of point j in view i and the 2D projec-
tion mi,j is given by

di,jm̃i,j = Xiqj . (3)

Having an estimation of the projective parameters Xi and
qj , it results that the projective depth can be estimated as

di,j = m̃+
i,jXiqj . (4)

Eliminating the projective depths di,j from Eq. (3) can be
done as in the DLT method [12] using the cross product
resulting in

E [m̃i,j ]× Xiqj = 0, (5)

where E is a 2 × 3 matrix containing the two first rows of
the identity and is used to remove the linear dependency
between the third line and the first two.

Note that DLT leads to minimizing the algebraic error
and, following [12], an appropriate normalization of the
data is necessary and introduced in Sec. 3. Another elim-
ination method can be obtained using Eq. (4) to substitute
the projective depths in Eq. (3). While this provides a MLE
similar to the reprojection error, it seems less accurate ex-
perimentally1.

Assuming we know the projective parameters of v views
where the image projections of the point j are visible, the
corresponding projective parameters qj must satisfyE [m̃1,j ]× X1

...
E [m̃v,j ]× Xv

qj = 02v. (6)

If the view i contains the image projections of p points for
which estimations of their projective parameters are avail-
able, then its projective parameters Xi vectorized row by
row as xi are such thatE [m̃i,1]× G1

...
E [m̃i,p]× Gp

xi = 02p , Gj
> =

qj 04 04

04 qj 04

04 04 qj

 . (7)

These two systems are homogeneous and linear in either qj

or xi. They can be written generically as

Ay = 0, (8)

where A is of size 2v×4 (point case) or 2p×12 (view case).

1Check the supplementary material for more details.

(a) Tiles, each one has
norm or sum of some
elements fixed.

(b) Step-like mask, the
dots are the fixed en-
tries.

(c) Cross-shaped ma-
trix, the dots are the
only non-null entries.

Figure 1. The black rectangular boxes represent the matrix D con-
taining the projective depths for 6 cameras (rows) and 12 points
(columns). Dots represent single entries while small boxes are
tiles that contain possibly more than one entry. (b) and (a) show
examples of valid constraints. (c) is an invalid configuration of D.

2.2. Projective Parameters Constraints

In this section, we propose a new set of linear constraints
on the projective parameters which satisfy the conditions to
be reconstruction friendly with respect to the GPRT [20].
This theorem states that D must be diagonally equivalent to
the true depth matrix and satisfy the following conditions:
no null column or row and not cross-shaped, meaning a null
matrix except for a cross as in Fig. 1(c).

Using the same tiling as in Fig. 1(a), for each tile we con-
strain the projective parameters of the corresponding point
or view to be estimated such that(

1

kv

kv∑
i=1

m̃+
i,jXi

)
︸ ︷︷ ︸

=c>

qj = 1 or

 1

kp

kp∑
j=1

m̃+
i,jGj


︸ ︷︷ ︸

=c>

xi = 1.

(9)
Note that the measurements must be available for all the
projection considered into this sum. However we do not
have to necessarily consider all the visible projections1.

These constraints can then be used to substitute one of
the projective parameters in Eq. (6) or Eq. (7), resulting in
a standard linear system which is faster to solve. Doing the
substitution to remove y1, the first entry of y in Eq. (8), we
have to split A, y and c as

A =
[
a A′

]
, y =

[
y1
z

]
and c =

[
c1
c′

]
, (10)

where a and A′ are the first and remaining columns of A.
Then after the substitution, we need to minimize

Bz = b with
{

B = A′ − ac′
>
/c1

b = −a/c1
, (11)

for the unknown vector z which is then a minimal
parametrization of the projective parameters that contains
only three degrees of freedom for a point and eleven for
a view. The resulting minimal or overdetermined linear
system can be solved or minimized efficiently in the Least
Squares sense after which we can retrieve y1 as

y1 =
1

c1

(
1− c′

>
z
)
. (12)



From Eq. (4), our constraints can be transferred to the
projective depths. When the sum contains only the last el-
ement of each tile, they are actually equivalent to the step-
like constraints presented in [20] and illustrated in Fig. 1(b),
which corresponds to the tiling of Fig. 1(a). This general-
ization was required as the projection of the last element of
each tile is not always visible and it has the advantage of
using all the data to build the constraints. To prevent cross-
shaped degeneracies, we impose in Sec. 3.2 the first tiles to
contain fixed entries forming a 2 × 3 tetris step-like block
coloured green in Fig. 1. As this sub-block cannot be cross-
shaped, the final reconstruction cannot be either.

3. Practical Projective SfM (P2SfM)
We describe here our approach to estimate the projec-

tive factors X and Q minimizing
∑

i,j∈Z ‖E [m̃i,j ]× Xiqj‖22
subject to the constraints of Eq. (9). A graphical illustration
is provided in Fig. 2 and important details on each step are
given from Sec. 3.2 to 3.5.

3.1. Overview of the Proposed Method

Before starting, the image projections are normalized to
improve the conditioning of the linear Least Squares sys-
tems to be solved2. It is more computationally efficient to
compute all m̃+

i,j and E [m̃i,j ]× only once and store them
into sparse data matrices. The method then starts with
an initial sub-problem (Sec. 3.2) and iterates by robustly
adding missing tiles (Sec. 3.4) where each tile corresponds
to either a view (3-rows) or a point (a column). Multiple
views or points can be added at the same time and the pro-
cedure continues until no further tile can be added. Search-
ing for tiles to be added depends on the number of visible
projections and eligibility thresholds which are dynamically
adjusted (Sec. 3.3). After each inclusion, the reconstruction
is refined by re-estimating all the points and views already
added (Sec. 3.5). The complete method is then given in
Alg. 1. The result is a normalized projective reconstruction
satisfying the GPRT [20] and the set of inlier projections.

3.2. Initial Sub-Problem Selection and Estimation

The initial sub-problem can be of arbitrary size but in
general it is preferable to start from minimal configurations.
In such case, we need to find a set of frames and points, i.e.
a matrix sub-block as in Fig. 2(a) that can be robustly solved
to get a valid initial projective reconstruction. This is done
in the standard way with robust fundamental matrix estima-
tion [12] after selecting two views using the pyramidal score
from [25] in a way similar to the affinity score of [27]. If
by chance the robust estimation of the fundamental matrix
fails, we move to the next higher score until a solvable sub-
matrix is found.

2Details on this step are given in the supplementary materials.

Algorithm 1: Practical Projective SfM (P2SfM).

1 Normalize projections and compute data matrices ;
2 Find an initial sub-problem and robustly solve it, see

sec. 3.2 ;
3 while reconstruction is not complete and

(reconstruction was extended or an eligibility
threshold can be decreased) do

4 Find currently eligibles views, see sec. 3.3 ;
5 Try to add eligibles views robustly, see sec. 3.4 ;
6 if at least one eligible view has been added then
7 Increase the eligibility threshold for points ;
8 Refine locally the reconstruction, see sec. 3.5 ;
9 else if no view was eligible then

10 Decrease the eligibility thresholds for views if
not minimum ;

11 Find currently eligibles points, see sec. 3.3 ;
12 Try to add eligibles points robustly, see sec. 3.4 ;
13 if at least one eligible point has been added then
14 Increase the eligibilty thresholds for views ;
15 Refine locally the reconstruction, see sec. 3.5 ;
16 else if no point was eligible then
17 Decrease the eligibility threshold for points if

not minimum ;

18 Refine globally the reconstruction, see sec. 3.5 ;

After extracting the epipolar geometry from the esti-
mated fundamental matrix as in [26, 30], an SVD of the
sub-matrix can be used to compute the projective param-
eters of the initial two views and the inlier points. The re-
sulting projective parameters are then balanced to match the
constraints as defined in Sec. 2.2.

3.3. Finding Eligibles Views and Points

Finding the views or points to add next is a critical is-
sue. In order to do so, we first define a point or view as
known if an estimation of its projective parameters is avail-
able. Initially known points and views are therefore given
by the solution of the initial sub-problem. We then call a
point (or view) eligible if there are more visible projections
in known views (or points) than a given eligibility thresh-
old, which is different for points and views. For views, we
also compute the pyramidal score [25] of the visible known
points and reject them if below a threshold.

If the eligibility thresholds are set too high, which is de-
sirable as it usually gives better estimations, it might happen
that no point or camera is eligible. In order to limit prema-
ture interruptions of the algorithm, the eligibility thresholds
are dynamically adjusted in Alg. 1 between an initial high
value and a minimum value both provided by the user. We
also included a rejection mechanism for points or views that



(a) Initial sub-problem (green). (b) Adding one view (blue). (c) Adding three points (blue). (d) Final reconstruction and inliers.

Figure 2. Example of the incremental procedure to reconstruct a scene with 6 views and 12 points. The dots indicates visible projections,
red ones are outliers. We start in (a) with a previously solved sub-problem of 4 views and 8 points in green, grey tiles indicates data not
yet considered. Then at each step, green tiles are the current reconstruction and tiles currently added to expand it are in blue. For instance,
in (b) we robustly add a view, automatically removing an outlier projection. In (c) we then robustly add three points. This is repeated until
we reach a final outliers free reconstruction in (d).

previously failed the robust estimation (see next section).
As a consequence, another condition to be eligible is that
the number of visible projections is greater than when the
last failure happened.

3.4. Robustly Adding a Point or View

Our method is based on minimizing the linear Least
Squares systems of Eq. (11) to estimate the projective pa-
rameters, which are known to be sensible to outliers due to
mismatches or strong noise. To deal with this, the estima-
tion is done robustly using a Locally Optimized RANSAC
[7] with the MSAC score [29] and an adaptive stopping cri-
terion given a minimum confidence of finding the optimal
inlier set. Projections detected as outliers are then removed
from the measurements matrix and treated as missing data.

During this procedure, we reject any random subset lead-
ing to a rank deficient B, a bad condition number of B or an
excessive error in Eq. (11). The two first cases can happen
with degenerate configurations of points or views but more
frequently when estimating a view [11]. In order to get bet-
ter estimation from the random subset, we also increased
its size. After selecting the inlier set of the visible projec-
tions by using a threshold on the reprojection errors, we
prune projections for which the projective depth is negative
or null. Finally we also reject the estimation if the resulting
inlier set is smaller than the random subset.

If no correct estimation can be found before a given max-
imum number of iterations, we temporary reject the view or
point. When new projections will be available for this view
or point, we try to add it again, ensuring the random subsets
contain at least one of the new projections. This is neces-
sary as a complete random subset would most likely con-
tains only previously rejected projections if there are just a
few new projections. The estimation would then fail as they
have already been through this procedure once.

3.5. Reconstruction Refinement

Because an incremental procedure does not consider all
the information at once, it can be affected by errors ac-
cumulation while iterating. To prevent this, we refine the
overall reconstruction after trying to add eligible points (or

views) if any addition was successful. The refinement is
done by alternating new estimations of all the projective pa-
rameters, starting from views (or points), and continue un-
til the overall change in the projective parameters is small
enough. This is done without the robust procedure but us-
ing only projections previously accepted as inliers. While
re-estimating, we use the same visible projections to build
the constraints as when the points or views were first added.
A similar method was proposed in [5] but without any con-
straints on the projective depths. To speed up the process
while doing the completion, the refinement is done only
over the views and points added in the two last iterations
of the main loop. The last refinement in line 18 of Alg. 1
provides the final reconstruction and it is done over all the
estimated points and views.

4. Experimental Results

We validated the practicability of our approach with
both synthetic and real experiments evaluating performance
in realistic cases with high percentages of missing data
and outliers. We compared our method (P2SfM) with [9]
(YDHL) and [14] (VarPro) that consistently outperform pre-
vious works thus making adequate the comparison with
these methods only.

4.1. Synthetic Dataset Results

To evaluate the proposed approach, 100 simulated se-
quences were generated with a missing data pattern that
models points falling out from the cameras field of view
as it is advisable to avoid randomly removed matches [2].
For each sequence, the 3D shape was obtained by randomly
generating 200 points inside a cube of unit dimension. A
set of 15 cameras was simulated from random intrinsic and
extrinsic parameters inside realistic ranges. Cameras were
placed randomly in a 1.25 units cube, looking at a random
position inside a 0.8 unit cube. Focal lengths are drawn
from [1500; 30500] pixels and sensor widths range from 800
to 6800 pixels with a 1.33 or 1.5 aspect ratio. We ensured
that each point was seen at least in four views and each view
contained at least 18 points projections.



To achieve exactly the tested ratios (from 50% to 75%),
we removed very few random entries when necessary. Fi-
nally, noise was simulated with a centred Gaussian on each
visible image projection. For evaluating results, the 3D er-
ror on one sequence is calculated as

∥∥S− SGT
∥∥
F
/ ‖S‖F

after registering the estimated 3D points with Procrustes
analysis. The 2D error is computed as the root mean square
(rms) of all the reprojection errors. All errors are then aver-
aged over all the sequences of the dataset.

4.1.1 Robustness to Outliers

For this experiment, we generated up to eight outliers by
replacing randomly some projections with random coordi-
nates inside the corresponding views. While all methods
have a very small reprojection error without outliers, even
one is enough to decrease drastically the performance of
previous works as it can be observed in Fig. 3(a). This im-
pacts also the 3D points reconstruction error which grow
quickly for them in Fig. 3(b). Differently, our approach
shows strong resilience to increasing number of outliers.

Note that for a given sequence, previous works return a
result for all points and views or for none of them while our
method always gives a reconstruction where some points
or views might be unestimated due to the rejection mecha-
nism of Sec. 3.4. In Fig. 3(c), the entire synthetic dataset is
considered and the percentage of unestimated points cor-
responds to the number of failed sequences for YDHL
and VarPro and the cumulative unestimated points for our
method. We see that VarPro fails less often than YDHL and
is not afflicted much by a few outliers. P2SfM is unaffected
at all by outliers, the small percentage of unestimated points
is constant and induced by noise.

4.1.2 Running Time Comparisons

Running times were obtained on a laptop having an intel
core i7-6700HQ processor and 16GB memory. No out-
liers were added and the missing data ratio was kept to
60%. Fig. 4(a) shows all algorithms performance on small
scale datasets of growing size. For each dataset size, ten
sequences were run and the average time is given. Both
VarPro and P2SfM are way faster than YDHL, clearly
demonstrating that including the projective depths as pa-
rameters of the problem is computationally expensive.

When dealing with medium scale sequences, Fig. 4(b)(c)
show the behaviour when increasing the number of points
and views respectively. For each size, the running time is
averaged over five sequences. The online procedure and
LLS minimization are keys to reduce computational costs
compared to VarPro. Due to high memory usage, YDHL
could not be run on the three biggest sequences and the three
smallest gave no result after 4 hours of computation.

Notice that all methods have been implemented in MAT-
LAB3 with no parallelization involved except for subrou-
tines natively supporting it. Using another language and the
shared memory paradigm, P2SfM can be massively acceler-
ated by estimating points (or views) in parallel.

4.1.3 Missing Data and Noise Effect

Fig. 5(a) shows the evolution of the 2D reprojection error
when increasing the noise level from a 0 to 2 pixel standard
deviation at two ratios of missing data (55% and 70%). Both
VarPro and P2SfM outperform YDHL even in the noise-free
case where they achieve an almost perfect reconstruction.
They have similar behaviour for noise growing up to 1 pixel,
and then the robust estimation of P2SfM starts filtering pro-
jections with high noise resulting in a decreased error.

The behaviour of the 3D structure error is displayed on
Fig. 5(b) when the missing data ratio grows from 50% to
75% in presence of noise (σ = 0.5 or 1.5 pixels). With a
low noise, VarPro and P2SfM have a similar evolution with
low errors. Due to the limited size of the sequences, when
the noise is higher and projections are filtered by the robust
estimation, few data remain available to the LLS estima-
tion in P2SfM and results in an higher error. In both cases,
YDHL achieves the lowest accuracy.

4.2. Real Data

In Tab. 1, we also evaluated P2SfM on various real
datasets of different size available in the literature. When
necessary, feature extraction and matching have been done
off-line once for all methods prior to reconstructions using
the first stage of COLMAP [25] and we built the measure-
ment matrix from the output. To obtain an Euclidean recon-
struction from the projective one, we used the metric up-
grade method of [4]. Given timings do not include the time
required for all these steps. Further results are provided in
the supplementary materials.

4.2.1 Small Scale Sequences

Six small scale sequences containing less than a million en-
tries in the measurements matrix M were evaluated and re-
sults are given in Tab. 1. P2SfM outperforms VarPro and
YDHL on both the 2D rms reprojection error and the run-
ning time for all sequences. An example of the 3D recon-
struction obtained is given on Fig. 6(b) for the famous Dino
sequence. It shows a dinosaur toy being rotated in front
of a camera, which results in elliptical trajectories for the
completed measurements as seen on Fig. 6(a). We used the
4983 points experiment since the smaller Dino sequence is
mostly suited for affine structure from motion approaches
[3] and it has a low missing data ratio.

3Our implementation is freely available online at https://
bitbucket.org/lmagerand/ppsfm.

https://bitbucket.org/lmagerand/ppsfm
https://bitbucket.org/lmagerand/ppsfm
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Figure 3. Behavior with outliers for the reprojection error (a), the 3D structure error (b) and the number of unestimated points (c) at two
different standard deviations of the noise (σ = 0.5 and σ = 1.5 pixels) and 60% of missing data. YDHL and VarPro are quickly and
strongly afflicted by outliers while P2SfM is almost unaffected thanks to the RANSAC based estimation.
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Figure 4. Running times of P2SfM compared to YDHL and VarPro on small scale sequences (a). On the larger scale experiments, timings
are reported with increasing number of points (b) or views (c) for P2SfM and VarPro. If on small scale sequences VarPro is faster (a),
P2SfM has a clear advantage on larger scale sequences (b)(c). YDHL is the slowest and cannot even handle medium scale sequences.
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Figure 5. Noise level effect on the 2D reprojection error (a) and
behaviour of the error on 3D structure (b) with increasing missing
data ratio. Both VarPro and P2SfM outperform YDHL.

(a) Completed measurements. (b) 3D reconstruction.

Figure 6. The dinosaur sequence. (a) shows the 2D image trajec-
tories after completion with a random colour for each one, making
evident the rotational motion of the dino. (b) presents the 3D re-
construction after metric upgrade where the colours gradient cor-
responds to the depth along the reconstruction principal axis.

4.2.2 Medium and Large Scale Sequences

As seen in Tab. 1 (the last four rows), existing PSfM
approaches are unable to reconstruct any of the medium
or large scale sequences evaluated which contain millions
of entries in the measurements matrix M. VarPro could
not complete them before exhausting available memory or
reaching a twelve hours time limit. YDHL is already hav-
ing troubles processing some of the small scale sequences
and was not evaluated here. Differently, our method suc-
cessfully delivers correct reconstructions, making it the first
PSfM method able to deal with such datasets. We compared
our results to COLMAP [25], a standard bundle adjustment
based method implemented in C++ using highly optimized
libraries and a camera model with radial distortion.

The first sequence consists of high resolution images of
a cherubim statue [1]. The scene displayed in the second
and third one are parts of Alcatraz, showing a corner of the
courtyard with its water tower and the west side of the main
building [23]. The feature points for these three sequences
have been extracted and matched using the first stage of
COLMAP. The last sequence is presented in [23] and it is
taken around the Dome des Invalides in Paris.

A view of the corresponding 3D reconstructions are
given in Fig. 7 and Fig. 8 (the 3D reconstructed models are
available in the supplementary materials). While COLMAP
achieves a lower reprojection error, we need about half the
time to process the two largest sequences. Given the size
of the Alcatraz West Side sequence (about 120 millions en-
tries in M), to the best of our knowledge this is the largest
successful test for a PSfM method.



Sequence P2SfM VarPro [14] YDHL [9] or COLMAP [25]
Name Size Missing 2D error Time (sec.) 2D error Time (sec.) 2D error Time (sec.)

House (VGG) 10× 672 57.7% 0.4268 2.12 0.6246 68.9 0.6639 1054

Y
D

H
L

Corridor (VGG) 11× 737 50.2% 0.3626 4.11 0.3853 331 0.4329 978
Dinosaur 319 36× 319 76.9% 0.4652 4.12 1.5761 90.8 3.3543 609

Dinosaur 4983 36× 4983 90.8% 0.3477 27 1.6492 1428 Time Limit (4H)
Wilshire (Ponce) 190× 411 60.7% 0.5011 52 0.5995 3623 0.6688 3851

Blue Teddy Bear (Ponce) 196× 827 80.7% 0.6067 385 1.4169 13341 Time Limit (4H)
Cherubim [1] 65× 72785 93.3% 0.9136 234 Time Limit (12H) 0.4827 182 C

O
L

M
A

P

Alcatraz Courtyard [23] 173× 59488 94.5% 0.7233 579 Out of Memory (8GB) 0.4226 1696
Alcatraz West Side [23] 435× 138811 98.4% 0.9124 2807 Out of Memory (8GB) 0.5728 5141
Dome des Invalides [23] 85× 94939 91.9% 0.3812 451 Out of Memory (8GB) Not Available (no images)

Table 1. Real sequences results. P2SfM, VarPro and YDHL were evaluated on six small scale sequences. The results confirm what is
observed on the synthetic dataset, VarPro and P2SfM outperform YDHL. On medium scale, P2SfM was evaluated on four sequences
against VarPro and COLMAP. VarPro could not provide a result for these sequences while COLMAP is usually slower than P2SfM.

(a) Cherubim. (b) Alcatraz Courtyard. (c) Dome des Invalides.

Figure 7. Reconstructions obtained with P2SfM for the medium scale sequences. All P2SfM reconstructions are convincing with respect to
the scene observed. The colours gradient corresponds to the depth along the reconstruction principal axis.

Figure 8. The Alcatraz West Side sequence reconstructed using
P2SfM and three sample images over the 435. This is a reasonable
reconstruction of 138811 points obtained in only 47 minutes.

4.3. Implementation Details

In order to obtain best results, we recommend setting the
minimum eligibility thresholds to at least 18 for views and
4 for points whenever possible, and advise to not set them
below 12 and 3 respectively. We used initials values of 48
for views and 12 for points. The parameters for the robust
estimation were: an outlier threshold of 4 pixels, a maxi-
mum number of iterations fixed at 5000, and a confidence

of 99.99% of having found the optimum set on early exit.
During the factorization, the refinement is halted when the
change in the projective parameters is less than 10−7 or 50
iterations have been done. The final refinement is made with
a threshold of 10−8 over the parameters change or a maxi-
mum of 150 iterations.

5. Conclusion
This paper presented P2SfM, an efficient method to solve

the PSfM problem in the case of strong ratios of miss-
ing data and relevant outliers corrupting the measurements.
Constraints has been included to comply with the GPRT,
ensuring a correct projective reconstruction. The method
was tested against challenging real scenarios with up to
98% missing data ratio and it has shown comparable or bet-
ter performance with respect to previous PSfM approaches,
making it a practical PSfM method. Future work will be
dedicated in adapting the method to hierarchical approaches
such as [27, 24]. To improve error containment, a global
non linear refinement will be integrated. Detecting and
merging similar points tracks as COLMAP could also in-
crease the quality of the reconstruction. Finally, to further
improves efficiency, a parallelized implementation is also
considered.
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