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Abstract. Low cost CMOS cameras can have an acquisition mode called rolling shut-
ter which sequentially exposes the scan-lines. When a single object moves with respect
to the camera, this creates image distortions. Assuming 2D-3D correspondences known,
previous work showed that the object pose and kinematics can be estimated from a single
rolling shutter image. This was achieved using a suboptimal initialization followed by local
iterative optimization.
We propose a polynomial projection model for rolling shutter cameras and a constrained
global optimization of its parameters. This is done by means of a semidefinite programming
problem obtained from the generalized problem of moments method. Contrarily to previ-
ous work, our optimization does not require an initialization and ensures that the global
minimum is achieved. This allows us to build automatically robust 2D-3D correspondences
using a template to provide an initial set of correspondences.
Experiments show that our method slightly improves previous work on both simulated
and real data. This is due to local minima into which previous methods get trapped. We
also successfully experimented building 2D-3D correspondences automatically with both
simulated and real data.
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1 Introduction

Unlike CCD sensors, CMOS sensors are well suited for embedded applications and have several
acquisition modes. One of these modes makes them cheap as its electronics is simpler and allows
for higher frame rate. This mode exposes the scan-lines of the sensor sequentially and is called
rolling shutter. We call a camera using it a rolling shutter camera. These cameras create distor-
tions in the image when an object or the camera moves during image acquisition. The object or
scene may appear curved or leaned depending on the motion. An example is shown in figure 1.
Most computer vision methods deal with global shutter cameras whereby all the sensor pixels are
exposed at once. These methods do not model the distortions resulting from the rolling shutter
acquisition mode.

Methods exist to compensate for the rolling shutter effect [1–3]. Instead of compensation,
it was shown recently that modelling the relationship between image distortions and object
or camera motion allows one to estimate the motion from a single image of a calibrated rolling
shutter camera [4–6]. This assumes the kinematics to be constant during image acquisition leading
to the uniform rolling shutter camera model. The parameters’ estimation is done using local
iterative optimization initialized by the global shutter model. This model has been successfully
used in robotics to track a moving object [7]. Since it requires an initialization, the tracking has
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(a) Still fan. (b) Rotating fan. (c) Still box. (d) Translating box.

Fig. 1. Examples of image distortions created by rolling shutter cameras.

to start from a known position and velocity. This model has also been extended to stereo rig [8]
and non uniform models also exists [9], still based on local optimization.

As an alternative to iterative approaches, we propose to use constrained global optimization of
a polynomial objective function in the rotational parameters. We called this polynomial uniform
rolling shutter. This is obtained using Taylor expansion of Rodrigues’ formula and elimination of
the translational parameters. The optimization results from the Generalized Problem of Moments
approach taken in GloptiPoly 3 [10]. The resulting Semi Definite Programming problem is solved
using Csdp [11] for performance reason. Contrarily to previous work, our approach does not
need an initialization, ensures that the global minimum is achieved and enforces the constraints
exactly. This allows us to use this model to match automatically 2D projections with 3D object
points and to estimate position and velocity without any prior knowledge.

Manually and randomly generated simulations have been used to study our model behaviour
and the matching. This allows us to define empirically a validity domain for Rodrigues’ formula
approximation, which shows to be large enough to cope with practical motion. With or without
automatic matching, increasing noise level makes the error to grow, especially on the dynamic
parameters representing the motion. Knowing correspondences, the estimation error with respect
to ground truth decreases when using more data points to estimate the parameters. This leads
to a growth of the error when using automatic matching and a lot of outliers as there are less
points available for the estimation. Our approach generally outperforms previous ones, is more
robust to moderate noise and allows for automatic correspondences. Two real sequences were
used to test the estimation method and two others to demonstrate the 2D-3D matching.

Paper organisation. Section 2 gives background on both the global shutter and uniform rolling
shutter camera models. Section 3 introduces our polynomial uniform rolling shutter camera
model. Our estimation method is given in section 4 and experimental results are reported in
section 5. Section 6 will give an example of application trough automatic and robust 2D-3D
matching.

Notation. Scalars and indices are in italics (e.g . c). Vectors are column matrices noted in bold
(e.g . v). Other matrices are in sans-serif (e.g . M). The 3D rotation matrix group is denoted
SO(3) and R is the set of real numbers. The homogeneous coordinates of a point w are written
w̃. The symbol ∼ represents homogeneous equality. The skew symmetric matrix associated to
v ∈ R3 is noted [v]×. The Moore-Penrose pseudo-inverse of matrix M is written M+. The identity
and null matrices or vector are respectively noted I and 0 or 0.

2 Background and Previous Work

The perspective projection model we use is the classical calibrated pin-hole projection [12, 13].
We suppose the geometry of the 3D object to be known and correspondences between its n 3D
points and their 2D projections in the image to be given. They are indexed by i ∈ [1;n].
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2.1 Global Shutter

Global shutter cameras expose all scan-lines simultaneously. A 3D point pi is projected to the
2D image point mi = [ui, vi]

> as
m̃i ∼ K [ R | t ] p̃i, (1)

where R ∈ SO(3) and t ∈ R3 are the rotational and translational parts of the object pose.
Assuming rectangular sensor elements then the internal calibration matrix is

K =

αu 0 u0
0 αv v0
0 0 1

 , (2)

where αu and αv are horizontal and vertical scale factors and [u0, v0]
> is the principal point.

These parameters are typically estimated using static calibration algorithms [14–16].
In general, given K and at least four object points with their corresponding measured image

projections, the object pose (R, t) can be uniquely estimated [12, 17, 13]. Using only three points
gives up to four solutions.

Fig. 2. The uniform rolling shutter camera model.

2.2 Uniform Rolling Shutter

A uniform rolling shutter camera model can be obtained by extending the global shutter camera
model [4]. Let (R1, t1) be the unknown pose of the object when the first scan-line of the image
is exposed. The kinematics of the moving object are the translation velocity vector v and the
rotation speed ω around a unitary axis a. They are assumed constant during the image acquisi-
tion. The known time between exposition of two consecutive scan-lines is noted τ . Therefore the
scan-line vi onto which point pi is projected is exposed at time τi = viτ .

The uniform rolling shutter projection model is illustrated in figure 2 and derived from equa-
tion (1) as

m̃i ∼ K [R1δR(τi,a, ω) | t1 + δt(τi,v)] p̃i, (3)

where δt(τi,v) = τiv and δR(τi,a, ω) is given by Rodrigues’ formula [18]

δR(τi,a, ω) = aa>(1− cos(τiω)) + I cos(τiω) + [a]× sin(τiω). (4)
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In [4], the kinematics and initial pose are estimated by minimizing the reprojection error.
This non-convex optimisation problem is solved using an iterative and local method, which is
initialized using the global shutter model for (R1, t1) and some constant arbitrary values for v,
a and ω. Rotation R1 is parametrised with a quaternion. The resulting unitary constraint and
the one on a are added to the objective function with an empirical normalization coefficient.

The same model and method have been used in robotics to track a moving object [7], aiming
at visual servoing. In order to get the 2D-3D correspondences during the tracking, the position of
the projections in the next frame are predicted using the estimation of the kinematics from the
current frame. This requires the correspondences to be known in the first image of the sequence,
as well as the object initial position and velocity.

3 Polynomial Uniform Rolling Shutter

Using an approximation of Rodrigues’ formula, the non-linear uniform rolling shutter model used
in [4] can be transformed into a polynomial model. Considering n correspondences, this gives a
system of 2n degree two polynomial equations with 12 unknowns subject to six quadratic and
one degree three constraints.

3.1 Rodrigues’ Formula Taylor Expansion

Assuming the products {τiω}i∈[1;n] to be small and defining w = ωa, the first order Taylor
expansion of sin and cos gives a polynomial approximation of Rodrigues’ formula

δR(τi,w) = I + τi [w]× . (5)

The domain of validity of this expression will be studied in section 5.1. The unknown vector w
contains the rotational speed parameters ω and a which may be extracted from w using

ω = ‖w‖ and a = w/ω. (6)

3.2 Polynomial Reprojection Error

Let d̃i = K−1m̃i = [fi, gi, 1]
> be the coordinate of m̃i expressed in the camera frame. We rescale

the time-line so that τ1 = 0 and define (R0, t0) to be the unknown object pose at this instant.
We use the direct parametrisation of R0 as this lowers the degree of the reprojection error and
thus is more efficient compared to others rotation parametrisations. Using Taylor expansion of
Rodrigues’ formula, one obtains the polynomial uniform rolling shutter model as

Nd̃i ∼ N [ R0 + τiR0 [w]×︸ ︷︷ ︸
=Ri

| t0 + τiv︸ ︷︷ ︸
=ti

] p̃i, (7)

where N is a data normalizing transformation composed of a translation to make the origin
being the centroid and an isotropic rescaling so that the average distance to the origin is

√
2.

This matrix looks like

N =

γ 0 −γµu

0 γ −γµv

0 0 1

 . (8)
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One can obtain the algebraic reprojection error using the cross product to get rid of the
homogeneous equality:

hi =

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

=S

[
Nd̃i

]
×
N[Ri|ti]p̃i = 0, (9)

where S is used to remove the dependency between the third line and the two firsts. Considering
n correspondences, the polynomial system of equations to satisfy is given by

h1 = 0
...
hn = 0

s.t.
{
R>0 R0 = I

|R0| = 1.
(10)

4 Solving the Polynomial System

Provided we have enough point correspondences, the polynomial system (10) can be solved using
constrained global optimization. This is done after elimination of the translational parameters.
The objective function is a degree four polynomial in twelve unknowns (the rotational parame-
ters).

4.1 Translational Parameter Elimination

The nine entries of Ri are degree two polynomials in the rotational parameters (R0 and w). Let
ρi be its vectorization and ηi be the vectorization of ti. One can notice from the definition of ti
that

ηi = Ci

[
t>0 | v>

]>
with Ci = [I|τiI]. (11)

Equation (9) can then be rewritten as

hi = AiNdρi + BiNηi = 0 ⇔ BiNCi

[
t>0 | v>

]>
= −AiNdρi, (12)

where Ai and Bi are respectively 2 × 9 and 2 × 3 matrices whose coefficients depend on di and
pi, the later being used only in Ai. Matrix Nd is the block diagonal concatenation of N repeated
three times.

Using n ≥ 3 point correspondences, t0 and v are therefore solutions of the linear system

D
[
t>0 | v>

]>
= −Aρ, (13)

where D is the vertical concatenation of {BiNCi}i∈[1;n], A is the block diagonal concatenation of
{AiNd}i∈[1;n], and ρ is the vertical concatenation of {ρi}i∈[1;n]. Assuming the scan-lines of all
the 2D projections to be different, then D is full rank because of its structure and[

t>0 | v>
]>

= −D+Aρ. (14)

4.2 Rotational Parameter Optimization

Substituting ηi in equation (12) using equations (11) and (14) results in

hi = AiNdρi − BiNCiD
+Aρ = 0. (15)
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Only the rotational parameters R0 and w are involved in this equation. They can be estimated
using the n point correspondences by constrained global polynomial optimisation

min
{R0,w}

‖ (A− DD+A) ρ ‖2, s.t.
{
R>0 R0 = I

|R0| = 1.
(16)

There exists tools such as GloptiPoly 3 [10] that handle this type of optimisation. This is
based on the resolution of the Generalized Problem of Moments. It results in a Semi Definite Pro-
gramming problem easily solved using Csdp [11] for performance reason. This requires that there
is only one global minimum and thus at least seven correspondences, as noticed experimentally
in section 5.1.

Once the rotational parameters have been estimated, ω and a may be extracted from w using
(6) and the translational parameters may be retrieved from equation (14).

4.3 Practical Details

With really small values of {τi}i∈[1;n], which is needed by the Taylor expansion of Rodrigues’ for-
mula, the matrix Dmight become ill-conditioned. Scaling the time-line using λ = mean({τi}i∈[1;n])
solve this numerical instability. This is equivalent to rescaling the motion parameters with 1/λ
and can be easily undone after the optimisation.

5 Experimental Results

We evaluated our approach using simulated and real data. In this section PURS stands for our
proposed model and URS denotes the model proposed in [4]. We note GS the global shutter
model.

5.1 Simulated Data

The first data set simulates the projection of three faces of a cube with manually chosen camera
and dynamic parameters. Translational and rotational motions with various velocities are sim-
ulated. The same camera and dynamic parameters were also used to project points randomly
placed. There is a total of 34 simulations in this set. The second data set is made of 113 simu-
lations with random camera and dynamic parameters. Each simulation is repeated with τ being
10−5, 10−6 and 10−7 seconds. The simulations are done following the same idea as in [3]. For
each line we project the object points with the pose of this line obtain from (3), and keep only
those projected onto the line.
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Approximation Validity The first set of experiment gives the domain into which the approxi-
mation of Rodrigues’ formula holds. From the complete simulated data set, we fitted a degree two
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polynomial over the root mean square relative error on the parameters with respect to the value
of τnω. This corresponds to the rotation angle of the last projected point, which is the maximum
one. Degree two polynomial is used because this is the degree of the next leading terms in the
Taylor expansion of Rodrigues’ formula. Figure 3 shows the result of this experiment.

Generally vi < 2000,∀i ∈ [1;n], and τ can be as low as 10−8 seconds on very high speed
CMOS cameras. Empirically τnω have to be less than 0.05 in order to keep the error under 5%,
this allows rotation velocity up to ten thousand rotations per minute.
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(b) Random points rotating
slowly and translating quickly,
long exposure time.
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ing and translating, long expo-
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Fig. 4. Examples of relative error curves with respect to the number of points used for the estimation.
The error decreases with the number of points. Usually our PURS approach outperforms the URS
method. The error with GS is generally at least an order of magnitude larger than those of PURS and
URS.

Effect of the Number of Points Used Figure 4 shows the relative error on the parameters
with respect to the number of points used in their estimation. Usually the relative error on
the dynamic parameters are at least an order of magnitude higher than the one on the static
parameters. This is due to the coefficients of the dynamic parameters in the objective function
which are square values of the measured data. For this reason, the relative error is given as
permille for the static parameters and as percent for the dynamic parameters.

Using 6 or 6.5 points usually leads to incorrect results. This is expected as we need three
points to estimate the dynamic parameters and the static parameters needs at least four points
to be uniquely determined as seen in section 2.1. Between seven to twelve points the relative error
is decreasing quickly With more than twelve correspondences, the error is slowly decreasing or
nearly stable for both methods. With at least seven points, usually our method outperforms
previous work.

Effect of Gaussian Noise Here we study the effect of a Gaussian centred noise added to the
2D projections in the image. The noise level is varied from 0.01 to 2 pixels. The curves of the
relative error with respect to the noise level are given in figures 5(a) and 5(b).

As already noticed in section 5.1, the dynamic parameters are more sensitive to noise than
the static parameters. The error on these parameters quickly becomes very high with both
approaches, although the PURS method is a bit more resistant generally. With noisy data,
increasing the number of points decreases the error, as shown in figure 5(c).
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Fig. 5. Examples of relative error curves with respect to noise level or number of points. The error on
dynamic parameters grows quickly with the noise leve for all methods, although PURS is a bit more
robust. Using more data points improves the estimation.

5.2 Real Data

Our method is compared with previous work using two sequences filmed using a PixeLINK
PL-B771 rolling shutter camera. One shows an object undergoing a nearly pure fronto-parallel
rotation and the other a nearly pure translation. These two simplest motion were used in order
to evaluate the deviation to the real motion without having ground truth.

GS
URS
PURS
data

(a) Rotating object.

GS
URS
PURS
data

(b) Translating object.

Fig. 6. Reprojections obtained from GS, URS and PURS with real data.

First Sequence The object is undergoing a nearly pure fronto-parallel rotation. This sequence
is made of 28 images featuring 17 points with known correspondences. One of these images and
the corresponding reprojection are shown in figure 6(a).

On figure 7(a), we fitted a circle through the estimated translations of seven consecutive
images with high velocity. As the error between the estimation and the fitted circle is 21mm
with the URS approach and 0.4mm with the PURS method, the later is more coherent with
a rotational motion. The PURS approach also better fits the fronto-parallel placement of the
camera as the standard deviation on the depth axis is only 2.8mm whereas it is 30mm with the
URS method.

Second Sequence A box undergoing a manual translation guided by a rail is filmed. There is 16
correspondences in this sequence of ten images. An example of reprojection for this sequence is
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Fig. 7. Motion parameters estimated on real data: this is consistent throughout the frames and represents
closely the real motion.

given in figure 6(b). The estimated translation velocity are shown in figure 7(b). We fitted a line
through the translations and table 1 shows that the PURS method outperforms the URS approach
as it fits better to a nearly pure translational motion: quasi-static rotations and translations
following a straight line.

Table 1. Average distance of the translations to the fitted line,
average angular velocity and mean standard deviation of the
rotation Euler angles through the sequence with a nearly pure
translation motion. The lower this values, the better the esti-
mate is with respect to the real motion.

URS PURS
distance (mm) 16 4.4

velocity (rad/s) 13 2.7

std dev. Eul (rad) 1.3 0.04

6 Automatic 2D-3D Correspondences

6.1 Description of the Method

An initial correspondences set is obtained from a SIFT [19, 20] matching between a template of
the object without motion and the current frame. In order to process real data, an accurate 3D
model of the object is needed. We used global shutter stereo reconstruction from a calibrated
stereo rig to obtain such a model, choosing one of the views as the template and keeping the
SIFT descriptors used during the reconstruction for matching with the current frame.

Particular care must be taken in choosing the various thresholds in RANSAC. The error
used to select the inliers can’t be computed from equation (15) as the pseudo inversion used to
eliminate the translational parameters might cause the rows to be exchanged. Using the initial
reprojection error from equation (9) solves this issue.

6.2 Experimental Results

Simulated Data Using the same simulated data as in section 5.1, the response to noisy data has
been verified again. On figure 8(a), the same effect as previously can be observed: error grows
quickly with noise, especially on the dynamic parameters. There was 5 known outliers in the
40 points considered in these experiments, which were correctly filtered out by RANSAC every
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Fig. 8. Relative error on the parameters with respect to the number of outliers or the noise level.

time. The outliers were obtained by changing some of the correspondences to produce virtual
outliers. About one half of them were mismatched points and the other part were set to random
2D projection.

We also studied the behaviour with respect to the number of outliers and a small constant
level of noise about a tenth of a pixel on all projections. The outliers percentage has been varied
from 2% up to 50% on a total of 40 points. Results from this experiment is given in figure 8(b).
As the percentage of outliers increases, the error on the parameters’ estimation with respect to
the ground-truth also increases. This is expected as there are less points left to estimate the
parameters once the outliers have been filtered and as shown previously, with noisy data the
error increases when there is less points available. Despite a small number of iterations allowed
(one thousand), the correct set of inliers has been found every time.
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Fig. 9. A box falling in front of a rolling shutter camera (b-d) and its template (a). The object and its
estimated velocity has been reprojected on (c) with the static pose estimation. Despite there is still two
outliers, the motion is really close to being the real one as it’s nearly vertical and the estimated velocity
is about 2.1m/s after less than one third of a second of free fall. On the first and third image, there was
not enough points detected to robustly rebuild correspondences and estimate the model parameters.
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Real Sequences We started by dropping a box in front of a rolling shutter camera as seen in
figure 9. The 3D reconstruction of the box model used around eighty points which were available
for matching. The resulting motion is a vertical translation shown in figure 9(c). Despite the
frame rate being 48fps, the motion was fast enough for the object to appear only on three
consecutive frames and being seen entirely in only one.

Figure 10 shows a sequence of four image exhibiting a rotating box which decelerate. Less
than forty points were available in the 3D model of this object. The estimated velocity has been
reprojected at the object centroid on each image. On image two and four, the results are really
accurate and coherent with the motion. In the third image, the direction of the velocity is biased
by an outlier not filtered out probably due to the various thresholds in RANSAC not being
optimal. The estimation mostly failed on the first image due to the initial set of correspondences
being too small and with a lot of outliers (more than 80%).

Another longer sequence featuring a cup in a planar motion is presented as supplementary
material. Many more feature points are observed in the frames, therefore the robust estimation
failed less often. The planar motion has been recovered correctly in most of the frames.

Velocity

(a) First image
(12.17rad/s)

Velocity

(b) Second image
(8.96rad/s)

Velocity

(c) Third image
(3.76rad/s)

Velocity

(d) Fourth image
(1.34rad/s)

Fig. 10. A box rotating initially at 12.5rad/s and decelerating through a sequence of four images. The
estimated rotational velocity given in each image caption and reprojected at the object centroid is
coherent with this motion on image two to four. However, an outlier was not detected on the third image
and therefore the estimation is not as good as the ones in the second and fourth image. The rotational
velocity is still correctly estimated, but its direction has been biased by the outlier. The suboptimal
thresholds and iteration limit in RANSAC might be responsible. In the first image the optimisation
failed as there was not enough points in the initial matching and a lot of wrong correspondences.

7 Conclusion

The distortions created by rolling shutter cameras give more information in a single image than
global shutter cameras, and usually with a lower cost. Knowing the geometry of the object and
correspondences with its projection on a single template, they can be used as a motion sensor.
All this gives to these cameras a very wide interest.

Assuming the object motion to be uniform and using a polynomial approximation of Ro-
drigues’ formula, we proposed a method to estimate the uniform motion using constrained global
optimization of a polynomial objective function. The optimization is done using the Generalized
Problem of Moments method from GloptiPoly 3 and the resulting Semi Definite Programming
problem is solved using Csdp.

The estimation has been tested and compared to previous work. As our method ensures
that the global minimum is found and the constraints perfectly satisfied, it usually outperforms
previous methods and allowed us to build automatically robust 2D-3D correspondences. Knowing
these correspondences, the behaviour with noisy data has been studied as well. Although the
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static parameters are quite robust to noise, the motion parameters are highly sensitivity for all
approaches. This result was also confirmed when building the correspondences automatically.
Furthermore, we showed results on real data that exhibit estimated parameters coherent with
the real motion. Matching the 3D object points with the 2D projection using a template has
been demonstrated on real data. The method does not behave as well with actual data as with
simulated one but is still able to recover the motion correctly most of the time.

There is still a lot of work to do that would allow to obtain greater results from this method on
real data. Because the estimation is quite sensitive to noise, improving localisation of the features
points in rolling shutter images would massively reduce the final estimation error. Obtaining
larger inliers set free of any outliers with automatically enhanced thresholds would even improve
a lot the results.
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