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Abstract

Rolling shutter is an acquisition mode for
CMOS cameras which sequentially exposes the
scan-lines. This creates image distortions when
a single object moves with respect to the camera.
Previous work showed that the object pose and
time-constant kinematics can be estimated from a
single rolling shutter image.

We propose a generic model for rolling shutter
cameras and its application to the estimation of a
dynamic, time-varying, pose. The model parame-
ters are initialised from a ‘Piecewise Global Shut-
ter’ approximation and refined by a non-linear min-
imisation of the reprojection error under ‘Deriva-
tive Based Smooth Rolling Shutter’ constraints.

Contrary to previous work, our rolling shutter
camera model makes it possible to estimate non-
uniform dynamic pose. Experimental results on
both synthetic and real data show that for a reason-
able level of noise, the proposed framework outper-
forms previous work.

1. Introduction

CMOS sensors are generally cheaper and offer
more acquisition modes than CCD sensors. One
of these modes is called rolling shutter. It exposes
the scan-lines of the sensor sequentially. We call a
camera using this acquisition mode a rolling shut-
ter camera. Most of the computer vision methods
deal with global shutter cameras whereby all the

(a) Still fan. (b) Rotating fan.

Figure 1. Example of image distortions created by rolling
shutter cameras.

sensor pixels are exposed at once. Rolling shutter
cameras create distortions in the image when the
single filmed object moves during image acquisi-
tion. Depending on its motion, the object may ap-
pear curved or leaned. An example of such distor-
tions is shown in figure 1. These distortions are not
modelled by the classical camera models.

There exist methods that compensate for the
rolling shutter effect [3, 7]. Our goal is different,
and draws on [1, 2], which showed that modelling
the relationship between image distortions and the
object motion allows one to estimate the kinemat-
ics from a single image of a calibrated rolling shut-
ter camera. We call the camera model used in
[1, 2] uniform rolling shutter, since it assumes the
kinematics to be constant during image acquisition,
which means uniform motion. Many natural mo-
tions violate this hypothesis, especially in robotics
where massive accelerations may happen (tens of
times earth gravity).

We propose a generic rolling shutter camera
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model using dynamic pose parametrisation, i.e. a
pose which depends on the scan-line. Based on
2D-3D correspondences, we introduce a method to
estimate a scan-line-wise pose implementing dy-
namic pose. This uses non-linear minimisation of
the reprojection error subject to some constraints.
We propose a set of such constraints by setting to
zero the scan-line-wise pose parameters derivatives
across the scan-lines at some order. We dub this
method Derivative-Based Smooth Rolling Shutter.
This optimisation is initialised using a Piecewise
Global Shutter approximation.

Using simulated data with non-uniform mo-
tions, we analyse the behaviour of the proposed
model and estimation method, and compare it to
previous methods. Three parameters are consid-
ered: the density of points across the scan-lines, the
number of consecutive points used in each global
shutter pose estimation, and the level of noise on
the image point positions. Our approach outper-
forms previous methods.

Paper organisation. Section 2 gives background
on both the global shutter and uniform rolling
shutter camera models. Section 3 introduces our
generic rolling shutter camera model. The estima-
tion method is given in section 4 and experimental
results are reported in section 5.

Notation. Scalars and indexes are in italics (e.g.
c). Vectors are column matrices and noted in bold
(e.g. v). Other matrices are in sans-serif (e.g.
M). The 3D rotation matrix group is denoted
SO(3). R and Z are the real and integer sets.
All other sets are in calligraphic characters (e.g.
G). dre and brc are the upper and lower nearest
integer to r. The homogeneous coordinates of a
point p are written p̃. The function ϕ(ṽ) trans-
forms homogeneous coordinates into inhomoge-
neous ones: ϕ(p̃) = [p1/pa, . . . , pa−1/pa]

> with
p̃ = [p1, . . . , pa−1, pa]

>. The symbol∼ represents
the homogeneous equality. n is the number of 2D-
3D correspondences, indexed by i ∈ [1, n], and l is
the number of scan-lines in an image, indexed by
j ∈ [1, l]. ki ∈ [1, l] is the scan-line onto which
point i lies.

2. Background and Previous Work

We use perspective projection modelled by the
classical calibrated pin-hole projection [4, 9]. Cor-
respondences between the 3D object points and
their 2D projections in the image are supposed
known. For non-linear optimisation, we use a con-
strained Levenberg-Marquardt method as in bundle
adjustment [12].

2.1. Global Shutter

For global shutter cameras exposing all scan-
lines at once, a 3D point pi is projected on the 2D
image point mGS

i as

m̃GS
i ∼ K [ R | t ] p̃i, (1)

where R ∈ SO(3) and t ∈ R3 are the rotational
and translational parts of the object pose. K is the
known internal calibration matrix. Assuming rect-
angular sensor elements then

K =

 αu 0 u0
0 αv v0
0 0 1

 , (2)

where αu and αv are horizontal and vertical scale
factors and [u0, v0]

> is the principal point. These
parameters are typically estimated using static cal-
ibration algorithms [13, 5, 14].

Given K and at least four 3D object points
{pi}ni=1 with their corresponding image projection
{qi}ni=1, the object pose (R, t) can generally be
uniquely estimated [4, 9]. In this paper we use the
EPnP method [6]. This method is based on the res-
olution of up to four systems of linear equations
and is of complexity O(n).

2.2. Uniform Rolling Shutter

It was shown in [1] that a uniform rolling shut-
ter camera model can be obtained by extending the
global shutter camera model. To do so the un-
known kinematics parameters of the moving object
are vectorised as x, which is assumed constant dur-
ing the image acquisition. Let (R0, t0) be the initial
pose of the object, to be estimated too. Equation (1)



Figure 2. The Uniform Rolling Shutter camera model
of [1] based on Rodrigues formula. This model handles
constant kinematics only.

is modified as

m̃URS
i ∼ K [ R0δR(ki,x) | t0 + δt(ki,x) ] p̃i,

(3)
where δt(ki,x) and δR(ki,x) are given by Ro-
drigues formula [8]. This projection model is il-
lustrated in figure 2.

In [1], the kinematics and the initial pose are es-
timated by minimising the reprojection error

min
x,(R0,t0)

n∑
i=1

‖qi −ϕ
(
m̃URS
i

)
‖2,

s.t. R0 ∈ SO(3). (4)

This non-linear optimisation problem is initialized
by the global shutter model for (R0, t0) and some
constant arbitrary value for the kinematics.

3. A Unified Camera Model
3.1. Generic Rolling Shutter Camera Model

For F ⊂ Z, we dub dynamic pose a pose written
as a function of the scan-line j ∈ F being consid-

ered:
{(R(j,v), t(j,v))}j∈F , (5)

where v contains the parameters of the motion
model. See section 3.2 for some practical exam-
ples.

Providing that F includes {ki}ni=1, we define
our generic rolling shutter camera model with dy-
namic pose as

m̃GRS
i ∼ K [ R(ki,v) | t(ki,v) ] p̃i. (6)

The estimation of a dynamic pose can be done
accurately with this camera model using a non-
linear optimisation of the reprojection error

min
v

n∑
i=1

‖qi −ϕ
(
m̃GRS
i

)
‖2,

s.t.
{

R(j,v) ∈ SO(3), ∀j ∈ F
C(v) = 0,

(7)

where C(v) represents constraints of the motion
that must be imposed to make the problem well-
posed when the length of v is greater than 2n, the
number of constraints provided by the reprojection
error. A set of such constraints is examined in sec-
tion 4.2.

3.2. Instances of the Generic Rolling Shutter
Camera Model

Global Shutter. Using our generic rolling shutter
camera model of equation (6), global shutter can be
written with {

R(j,v) = R
t(j,v) = t,

(8)

where v contains a vectorised parametrisation of
the static pose (R, t). Given at least four 2D-3D
correspondences, no additional constraint has to be
imposed.

Uniform Rolling Shutter. The same goes for
Uniform Rolling Shutter which can be written us-
ing {

R(j,v) = R0δR(j,x)
t(j,v) = t0 + δt(j,x),

(9)



Figure 3. Our piecewise global shutter initialisation. The
n = 19 tracked points are the black ellipsoids. Here
s = 6 and thus three sets of points appear, the first one
having 7 points. The three centre scan-lines to which the
estimated pose is assigned are denoted as a, b and c.

where v contains a vectorised parametrisation of
the initial pose (R0, t0) and x, the kinematics pa-
rameter vector defined in section 2.2. Given at least
seven 2D-3D correspondences, no additional con-
straint has to be imposed.

3.3. Scan-line-wise Pose

One of the most generic dynamic pose is ob-
tained by parametrising the pose of each scan-line
in the image: {(Rj , tj)}lj=1. In this case, v con-
tains some vectorised parametrisation of all these
poses. We call such a dynamic pose scan-line-
wise pose. It allows one to represent any motion,
including non-continuous ones. We also define a
sparse form of the scan-line-wise pose given by
{(Rj , tj)}j∈S with S ⊂ [1, l]. For this sparse form,
v contains only the parameters of the pose for the
scan-lines in S.

4. Scan-line-wise Pose Estimation
In order to estimate our scan-line-wise object

pose from a single rolling shutter image, we solve

the non-linear optimisation problem (7) under a set
of constraints based on the derivatives of the scan-
line-wise pose parameters We propose an initialisa-
tion method and dub it Piecewise Global Shutter.

4.1. Initialisation: Piecewise Global Shutter

Our method to initialise the scan-line-wise pose
is summarized in algorithm 1. This method is made
of two main steps, explained below, but still has an
overall complexity of O(n).

Sparse estimation. We consider that for a lim-
ited number s of consecutive points across the
scan-lines, the rolling shutter distortions can be ne-
glected. The bn/sc sets of scan-lines (line 1 alg. 1)
does not necessarily have the same count of scan-
lines. Some sets actually contain s + 1 points as
we dispatch the n−sbn/sc remaining points along
them. The loop (line 3 alg. 1) gives a sparse scan-
line-wise pose {(Rj , tj)}j∈M. This is illustrated
in figure 3. Defining η(j) ∈ M to be the function
mapping j to the centre scan-line of its set, Piece-
wise Global Shutter is written using (6) with{

R(j,v) = Rη(j)
t(j,v) = tη(j),

(10)

where v contains the parameters of the bn/sc
poses.

Algorithm 1: Estimation of a scan-line-wise
pose using a piecewise global shutter ap-
proach.

Split the tracked points into bn/sc non1

overlapping sets of consecutive points ;
M← ∅ ; // List of the centre2

scan-lines
forall sets of consecutive points do3

Compute j, the centre scan-line ;4

M←M∪ {j} ;5

Estimate (Rj , tj) using EPnP [6] ;6

Despike using Savitzky-Golay filter [10] ;7

Interpolate {(Rj , tj)}j∈M to {(Rj , tj)}lj=1 .8
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Figure 4. Example of interpolated scan-line-wise pose
from simulated data with a sparse density of points across
the scan-lines. The plain line is ground truth and the
dashed line is the Piecewise Global Shutter initialisa-
tion. The discontinuities corresponds to the limits of the
points sets. The dash dotted line is the Derivative-Based
Smooth Rolling Shutter refinement.

Interpolation. The sparse scan-line-wise pose
may contain some spikes due to ill-conditioned sets
of points. The method we use to filter it before in-
terpolation (line 7 alg. 1) performs a local polyno-
mial regression to determine the smoothed pose pa-
rameters for each set. The interpolation (line 8 alg.
1) uses linear interpolation for the translational part
and spherical linear interpolation [11] for the rota-
tional part. The later interpolates rotations using
unit quaternions such that the result is consistent
with a rotation around a fixed axis at uniform angu-
lar velocity. Figure 4 shows an example of such an
interpolation.

4.2. Refinement: Derivative-Based Smooth
Rolling Shutter

Given a scan-line-wise pose {(Rj , tj)}lj=1, it is
possible to refine it. Noting m̃i the 2D projection
of p̃i as defined in equation (6), this is done with
the minimisation (7) which becomes

min
{(Rj ,tj)}lj=1

n∑
i=1

‖qi −ϕ
(
m̃GRS
i

)
‖2,

s.t.
{

Rj ∈ SO(3), ∀j ∈ [1, l]
C(v) = 0.

(11)

We must define a set of constraints C(v) as there
is 6l independent parameters in this optimisation

problem and the reprojection error gives only 2n�
6l constraints.

The time between the exposure of two consecu-
tive scan-lines is assumed constant. Therefore, set-
ting to zero a central finite differentiation scheme
of the pose parameters across the scan-lines im-
poses a smooth variation of these parameters over
time. At a defined order d and for scan-line j ∈
[1 + dd/2e, l − bd/2c], the derivatives of the pose
parameters w.r.t. the scan-lines are

δdvj =

d∑
h=0

(−1)h
(
d

h

)
vj+b d

2 c−h, (12)

where vj is the vectorised pose parameters of scan-
line j. The derivative-based priors are then

C(v) =

 δdv1+dd/2e
...
δdvl−bd/2c

 = 0. (13)

Practical details. We parametrise the rotations
using unit quaternions. The Jacobian of the re-
projection residuals, the unit quaternion constraints
and derivative priors with respect to the pose pa-
rameters are highly sparse. The 12n+4l+7d(l−d)
only non-zero entries of this 2n+ l+7(l− d)× 7l
Jacobian are analytically computed, resulting in a
fast optimization. One needs to take care of the
scale of the optimized parameters. The quaternions
lie in the [0, 1]4 range whereas the translations can
take any value in R3. We used a rescaling based on
the Jacobian in order to get rid of this issue, as in
Matlab Levenberg-Marquardt implementation.

5. Results

In this section ‘PGS’ stands for the Piecewise
Global Shutter initialisation. ‘DBSRS’ is used for
Derivative Based Smooth Rolling Shutter. ‘URS’
means Uniform Rolling Shutter. In legends, these
terms are followed by either ‘(R)’ or ‘(t)’, standing
for rotations and translations. For DBSRS we used
an arbitrary derivative order d = 2, as d = 3 tends
to overfit and d = 1 results in discontinuities.
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(a) For a sparse distribution of the points, the piecewise global
shutter approach is error-prone and URS is more accurate.
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(b) The same motion with a dense distribution of the points, PGS
is at least as accurate as URS and DBSRS outperforms both of
them.

Figure 5. The histogram shows the distribution of the
tracked points across the scan-lines, and the graph shows
the residual mean squared error to ground truth. PGS is
sensitive to the density across the scan-lines. This sensi-
tivity is also noticeable inside a single frame if the den-
sity is not uniform across the scan-lines With a dense dis-
tribution, DBSRS outperforms URS. In this experiment,
the noise level was around half a pixel.

5.1. Simulated Data

We simulated three faces of a cube being pro-
jected with a rolling shutter camera. The cube is
simulated to be either static, undergoing pure trans-
lation, pure rotation or general motion. The three
motions are non-uniform as seen in figure 4.

Figure 5 shows the behaviour of all the meth-
ods with respect to the density of the points across
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Figure 6. Distribution of the minimum errors to ground
truth with respect to the value of s. The best value of s
usually lies in the range [7, 18].
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Figure 7. Behaviour of the error relatively to the noise
level on tracked points coordinates. For less than a
few pixels of noise, DBSRS outperforms the other ap-
proaches.

the scan-lines. The sparser the distribution, the
stranger the rolling shutter effect. A dense distribu-
tion makes the PGS hypothesis to hold better, and
thus makes a better initialisation of DBSRS. From
now on, every reported result is obtained using a
sufficiently dense distribution, i.e. at least one point
each 4 or 5 lines.

A way to limit the effect of the distribution is to
carefully choose the number of consecutive points
used for the global shutter pose estimation. This
value acts as a trade-off between two effects: the
smaller s, the better the PGS hypothesis, and the
larger s, the more robust to noise the EPnP [6]. Fig-
ure 6 shows how the method reacts to variations in
s. Since the PGS method is of complexity O(n),
we can take a greedy approach: we test all the val-
ues s ∈ [7, 18] and keep the solution with the min-
imum reprojection error.

Keeping the greedy approach to automatically
choose the correct s value, we can test the perfor-
mance of the model when dealing with noisy data.



GS URS DBSRS
Reproj. error 353px 70.24px 0.019px
Std dev. (t) X X 2.8mm
Std dev. (R) X 0.0417rad 0.0493rad

Table 1. Reprojection errors, standard deviations of the
translations from the mean straight line and standard de-
viation of the rotations parameters. X indicates entries
where a value would be meaningless.

The generated noise is Gaussian, centred and of
standard deviation σ ∈ [0, 5] pixels. Figure 7 shows
a typical response of the proposed methods to the
noise, compared with URS. For high level of noise,
more than a few pixels, URS may become more
accurate as it is more constrained. With a reason-
able level of noise, DBSRS outperforms the other
approaches.

5.2. Real Data

We evaluate the method and compare it to pre-
vious ones using two sequence, one with an object
undergoing a nearly pure translation and the other
undergoing a nearly pure rotation. We use these
two simplest motion in order to evaluate the devia-
tion with respect to the motion without having the
ground truth.

First Sequence. We use the camera of a Nokia
5800 XpressMusic phone. This sequence shows a
box undergoing a translation guided by a rail. The
box is manually moved quickly and randomly so
that the motion is non-uniform. An example of re-
sult for this sequence is given on figure 8. Table 1
shows that the recovered dynamic pose is coherent
with a nearly pure translation: quasi-static rotations
and translations following a straight line. In this
sequence, the noise on image points coordinates is
about a few pixels, resulting from the poor quality
of the camera. There is 48 correspondences.

Second Sequence. We use a PixeLINK PL-
B771F filming an object undergoing a nearly pure
rotation with acceleration. This sequence is made
of 48 images. The point density is quite sparse as
only 17 correspondences are known. One of these

(a) The test object being manually moved, we can
see the distortions due to high accelerations.
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(b) The recovered translations and average straight line.

Figure 8. The test object for a pure translation motion
obtained by moving with high acceleration a box along a
rail.

GS URS DBSRS
Reproj. error 26.3px 0.781px 7e-4px

Std dev. (plane) X X 5.6e-5mm
Std dev. (circle) X X 0.1468mm

Table 2. Reprojection errors, standard deviations of the
translations from the mean plane and fitted circle.

images and the corresponding recovered transla-
tions are shown in figure 9. We fitted a plane
through the translations and a circle through the
points projected on this plane. Table 2 shows that
the translations are coherent with a nearly pure ro-
tation.

6. Conclusion

In spite of the low cost of rolling shutter cam-
eras, they can be turned into dynamic pose sensors
as shown by previous work [1], assuming the object
motion to be uniform during the image exposure.

We proposed a generic rolling shutter camera
model capable of handling both the global and uni-
form rolling shutter, and also any other type of
rolling shutter image. For this, we used the con-



(a) The test pattern.
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(b) The recovered translations, and fitted circle.

Figure 9. The test object for a pure rotation motion ob-
tained by mounting a test pattern on a drill. We fitted
a plane through the translations and a circle through the
points projected on this plane.

cept of dynamic pose, a pose which is written as
a function of the scan-line being considered. Us-
ing this camera model we showed how to estimate
a scan-line-wise pose, one of the most trivial dy-
namic pose. We use a constrained non-linear op-
timisation of the reprojection error, initialised by a
piecewise global shutter approach. The constraints
we use are built upon the derivative of the pose pa-
rameters.

Using simulated data, we showed that this
generic rolling shutter camera model is capable of
handling various non-uniform motions with a better
accuracy than previous methods. We also showed
results on real data that exhibits estimated dynamic
poses coherent with the motion given to the object:
for a pure translation motion, the estimated rota-
tions are nearly constant and the translations are
nearly a straight line.

There is still some work to do to determine the
limits of the optimisation methods used, and to ex-
tend this method to use line correspondences as in
[2].
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